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1 INTRODUCTION 

The cross-border demonstration project H3O-PLUS aims to set a new standard for 
harmonization across borders, not only for hydrostratigraphy, but also for hydrological 
data such as groundwater heads and groundwater quality.  
H3O-PLUS, WP3 of Resource, aims to be an advanced demonstration of a 
transboundary assessment of groundwater resources. It is ‘advanced’ in the sense that 
it builds on and extends previous work, trying to make it more useful for groundwater 
policy and management and for subsurface spatial planning. A 3D hydrogeological 
model has been developed in a series of so called ‘H3O’ projects in the transboundary 
region around the Roer Valley Graben, comprising parts of Germany, the Netherlands 
and Belgium. The model contains 3D maps of the top, base and thickness of aquifers 
and aquitards (see Figure 1.1). H3O-PLUS aims to add attribute data to these maps to 
facilitate the use of the maps in decision making processes. Note that the project does 
not aim to produce new maps or spatial delineations. The objective is to characterize 
units on existing maps and hence support the interpretation and use of those existing 
maps.  
 
The overall study area coincides with the study areas of previous H3O projects (Figure 
1.1). Vertically, the study is limited to the clastic (hydro)geological layers of Cenozoic 
age or younger. This coincides with the vertical scope of the recently developed 
transboundary 3D (hydro)geological models of the H3O projects. The base of the models 
is thus located at the top of the Chalk aquifer (Formation of Houthem or Maastricht) or 
the top of the Carboniferous deposits.  
 

Figure 1.1: Study areas of previous H3O projects (note the label “Roerdalslenk” can be translated 
to “Roer Valley Graben”) 
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This report describes the current practises of evaluation of the groundwater quantity 
monitoring in the three countries for groundwater management. It also covers the set-up 
of a database of groundwater head data and meteorological data for the H3O area 
covering parts of Belgium, Germany, and the Netherlands. The data is analysed, and the 
results are visualised in maps and transects. Groundwater head data within the 
provinces Noord-Brabant and Limburg from the Dutch national subsurface data 
repository (https://www.DINOloket.nl), Flemish data from VMM and SCK, and German 
data within North Rhine-Westphalia from the Erftverband have been added, together with 
precipitation, evaporation, and temperature data from the Dutch, Belgian, and German 
Meteorological Institutes. The report represents the first transboundary visualisation of 
groundwater heads and cross-border patterns of groundwater depletion for the study 
region based on the respective monitoring networks in the participating countries. These 
visualisations are now available through a dedicated transboundary GeoERA 
Groundwater web viewer. The results of the current report will be input for the next 
deliverable (D3.6) where we will explore the current protection and management 
strategies for shallow resources and deep paleo resources in the region. For this aim, 
the consortium cooperates with the regional stakeholders involved in the project, using 
the newly developed information and visualization system to help groundwater managers 
to harmonize groundwater strategies. As such, the work has been supported in part by 
the Dutch provinces of Noord-Brabant and Limburg, as well as the water companies 
Brabant Water and WML. 
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2 DATA 

 
In addition to a presentation of the national monitoring practices and connected results, 
a database has been created with groundwater head timeseries and meteorological data 
from Belgium, Germany and the Netherlands. The database has been analysed 
uniformly for the project area using various methods and the results are made available 
in a web-based viewer. The methods include trend analysis and time-series modelling 
using a transfer-noise approach linking the groundwater fluctuation to meteorological 
variation. 
 
The following criteria were used for the selection of the timeseries of groundwater heads: 
- At least 15 years with observations in ≥ 6 months, within the period 1994 through 

2018. Analysis further back into history is not desirable, because of an increased 
probability of changes in the hydrological system that may not be traceable; 

- Selection of piezometers in subsurface above Krijt/Kreide, in the project area with a 
buffer of 5 km around it. This covers the depths and area relevant for the studied 
groundwater resources; 

- The date of the last measurement is on 1/1/2017 or later. Thus, limiting the 
selection to piezometers that were in use at the end of the data period. 

The meteorological data consists of timeseries of precipitation, evapotranspiration, and 
temperature: 
- One value per day (daily totals of precipitation and evapotranspiration, and daily 

averages of temperature; 
- Covering period 1/1/1993 through 31/12/2018 (end date is identical to end date of 

groundwater head data period). 

For Belgium and Netherlands, Makkink evapotranspiration data were used. For Germany 
no evaporation data was available. Therefore, temperature has been used as a proxy, 
because of the correlation between the variation of temperature and evaporation (Figure 
2.1). 
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Figure 2.1 Relative values of average daily temperature (TG, blue line) and Makkink evaporation 
(EV24, green line) for the Dutch KNMI station of Eindhoven (370). 
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3 METHOD 

3.1 Head analysis per country 

3.1.1 Belgium 

The Belgian part of the H3O-Plus area is located in the Flemish part of Belgium, 
Flanders. 

3.1.1.1   Organisation 

The Flanders Environmental Agency (Vlaamse Milieumaatschappij, VMM) is responsible 
for the groundwater monitoring in the Flemish part of Belgium. For the status and trend 
monitoring they use two monitoring networks: the primary groundwater monitoring 
network and the phreatic groundwater monitoring network. Beside these there are other 
groundwater monitoring networks for example from nature organisations and for the 
follow up of bigger groundwater abstractions and projects to monitor the impact on the 
groundwater. The groundwater monitoring networks can be found on dov.vlaanderen.be.  
 
The primary groundwater monitoring network consists of single and multilevel monitoring 
wells where the groundwater level is measured manually each month. The screens are 
evenly distributed over the various aquifers, as far as possible situated outside the 
perimeter of (direct) anthropogenic influence. There are 74 wells with a total of 167 
screens. The depth ranges from 2 to 570 meters. The “GroundWater head Indicator 
(GWI)” monitoring network (for monitoring of drought events) is part of the primary 
groundwater monitoring network. The GWI monitoring points are screens which are used 
for the trend analysis of measured and predicted phreatic groundwater heads. These 
groundwater heads provide the most reliable picture of recent climate variations, that are 
tested against a relatively long history of terrain measurements.  
The configuration of the multilevel wells of the phreatic groundwater monitoring network 
is based on the behaviour of nitrates. Where the top filter is located directly below the 
water table and the second and third filer are located just above and just below the 
oxidation-reduction zone, respectively. The groundwater heads are measured here 
manually twice a year.  
The location of the monitoring wells in the Belgian H3O-Plus area is shown in Figure 3.1. 
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Figure 3.1: Primary monitoring wells (purple dots) and the phreatic monitoring wells (green dots) 
of VMM in the Belgian part of the H3O-PLUS area.  

3.1.1.2   Analysis method 

 
Groundwater time series 
The groundwater time series of the VMM can be analyzed and questioned at 
dov.vlaanderen.be.  
 
Trend calculation 
VMM uses different approaches for trend detection for phreatic and confined 
groundwater.  
For the trend calculations of the phreatic groundwater, the monitoring data of the primary 
and phreatic groundwater monitoring network are used. The calculations are performed 
using the “Trendanalist 6” program (https://www.amo-nl.com/software/trendanalist/). 
Trendanalist determines a monotonic linear trend on the measurement series and 
chooses a suitable significance test based on the characteristics of the measurement 
series: this is a linear regression test and its extensions or a Mann-Kendall test and its 
extensions. A test from the first group is applicable if the values of the measurement 
series have a normal probability distribution. If this is not the case, a test from the second 
group applies. For both groups, the extensions are intended to also take into account 
seasonal effects and/or autocorrelation. Trendanalist tests whether there is a 
monotonous trend in the data. The level of significance was set to 0.05.  
Trend reversals and establishing the starting points for trend reversal cannot be 
determined using the foregoing method.  
This methodology is used as part of the status and trend assessment of the groundwater 
bodies for the River Basin Management Plans (WFD). The methodology does not take 
into account or does not distinguish between natural and anthropogenic impact. This is 
justifiable because the situation is effectively influenced by the combination of natural 
and anthropogenic effects and a groundwater policy must take into account both and 
respond to them. The methodology cannot determine for the contribution of individual 
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influences to the trend. This is necessary to be able to conduct a responsible multi-track 
policy for groundwater and to determine the effectiveness of measures.  

 
Trends on the SWAP-series of the indicator points 
In order to gain some insight into the proportion of natural and anthropogenic variation 
in the trends of the phreatic measurement series, the GWI monitoring network is used. 
Spread across Flanders, this monitoring network comprises a selection of approximately 
154 screens from the primary groundwater monitoring network. The screens are selected 
in such a way that they are phreatic and that the groundwater levels are influenced as 
little as possible by water extraction, drainage or other human interventions. In addition 
to the monthly measurements, a SWAP model (Soil, Water, Atmosphere and Plant 
model, a physically based 1-dimensional model of the unsaturated zone created by the 
SWAP software. https://www.swap.alterra.nl) was developed for each screen to simulate 
the groundwater heads in this monitoring point (Heuvelmans et al., 2011). The Indicator 
monitoring network is usually used to draw up the groundwater head indicator 
(Grondwaterstandindicator | DOV (vlaanderen.be) which, among other things, monitors 
drought.  
SWAP simulates the hydraulic head for shallow, phreatic screens (<50m -mv) and takes 
into account, among other things, soil properties, the observed daily precipitation and 
evaporation etc., but does not take into account anthropogenic influences (such as 
groundwater extraction). Thus, trends on the simulated hydraulic heads are a measure 
of the variation in climatic conditions. These simulated groundwater head series can then 
be compared with the measurements (see Figure 3.2). The difference between the two 
cannot be explained by SWAP and is therefore an indication of the anthropogenic 
influence, but also includes the model uncertainties (Kroes et al., 2008).  
 

 

Figure 3.2 Trend determination method of VMM for phreatic groundwater heads. 
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Trends are also calculated on the simulated levels and the residuals calculated as a 
difference with the site measurements for various indicator points, using the statistical 
program Trendanalist.  
Any statement regarding the share of climatic versus anthropogenic influence on the 
particular trend, however, can only be made at screen level and cannot be interpreted 
globally.  
 
For confined groundwater a statistical approach is used. The confined head time series 
are pre-processed to fill gaps and remove outliers in the time series. The method for gap 
filling depends on the data availability. If a time series is more than 75% complete, the 
gaps are filled by a time series model (SARIMAX) based on the detrended series. For 
series with 15-75% of data, the gaps are filled based on correlations between head time 
series in a groundwater body and meteorological variables. 
Next, LOESS is used for an initial assessment of the trends. Regression is carried out 
per segment of each series. Finally, the trend changes are refined (see Figure 3.3).  
 

Figure 3.3 Example of trend determination for confined groundwater heads
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3.1.1.3   Visualization method 

The trends within a waterbody can be summarized in a single block diagram (Figure 3.4). 

In addition to a single trend, VMM also visualizes the variation of the groundwater head 
in monitoring wells accounting for changes in the trends (Figure 3.5). 
 
 

The spatial distribution of the trends is also visualized (Figure 3.6).  
 
 

Figure 3.4 Visualization of trends in a phreatic (left) and confined (right) water body with trends 
ranging from very large increase (dark blue) to a very large decline (dark brown). 

Figure 3.5 Visualization of trends in confined groundwater with an indication of changes of the 
rates (‘versnelling’=acceleration, ‘vertraging’=deceleration, ‘trendombuiging’= trend reversal, 
‘stijging’=increase, ‘daling’=decline). 
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3.1.1.4   Impulse-response function modelling 

While the main experiences of the SCK CEN with impulse-response function (IRF) type 
of modelling where mainly with the RRAWFLOW model (Long 2015), with a custom R 
(R Core Team 2021) wrapper around for the optimisation of the model parameters 
(Rogiers et al. 2016, 2018; Lu et al. in prep), for this work we wanted to use a more 
flexible toolset which would make testing different IRF model architectures more 
straightforward. Hence, we resorted to an embedded probabilistic programming 
language (Golding 2019) and implemented the IRF models there. For now, because of 
time constraints, just aiming at optimisation, but this does enable proper probabilistic 
Bayesian inversion, which could be explored in future. 
 
Although RRAWFLOW uses already a rather complex architecture (non-linear recharge 
estimation with options for time-variant and non-parametric IRFs), we decided to look 
here at a larger range, of simpler architectures, to see what the effects on the estimated 
trends would be. As we saw previously that the time-variant IRF option in RRAWFLOW 
was useful, this is tested here as well, by allowing small fluctuations of the IRF 
parameters on a (periodic) monthly basis. The parametric IRF used here is the typical 
gamma distribution function with three parameters, as used by e.g. Long (2015) and 

Figure 3.6 Visualization of spatial distribution of trends ranging from very large increase 
(dark blue points) to a very large decline (dark brown points). The background color of the 
management areas (in this example the action and watch areas of the recovery programs 
that are posed for groundwater bodies in poor quantitative status) shows the median of the 
trends of the filters located in the respective action area. 
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Zaadnoordijk et al. (2019), and all three are allowed to vary (albeit in a very limited way, 
as we use regularizing Gaussian priors for the deviations). 
 
Furthermore, RRAWFLOW does not include a particular approach for addressing 
temporal correlation of the model residuals, while this is commonly used elsewhere in 
literature (e.g. Von Asmuth et al. 2002, 2008; Von Asmuth & Bierkens 2005; Obergfell et 
al. 2019; Zaadnoordijk et al. 2019; Collenteur et al. 2021). Additionally, one of the goals 
here is to quantify the anthropogenic, or maybe better the “unexplained” trends in the 
groundwater level time series. Therefore, it was decided to test the use of Gaussian 
processes (Roberts 2013) here, using Golding (2020), to both explicitly model the 
unexplained part of the time series, as well as address the temporal correlation of the 
model residuals. 
 
Additionally, we were working on process models for groundwater flow in the unsaturated 
and saturated zones for different catchments, in the framework of the Future floodplains 
project (https://www.futurefloodplains.be/). Some of the recharge calculations are done 
there for an area not too far from the H3O-plus project area. Hence it was also interesting 
to try and see if these results could be used for the input to these IRF type of models, 
next to the more traditional use of meteorological time series (i.e. precipitation and 
temperature in case of RRAWFLOW, or precipitation and evapotranspiration in this 
work), which does not require a separate process modelling exercise. 
 
The general approach here is thus to look at all possible combinations of the above (i.e. 
inputs to the model, time-variance (or not) of the IRF and the inclusion (or not) of a 
Gaussian process), all implemented in the embedded probabilistic programming 
language, and applied to the set of 21 indicator wells of the VMM (see Figure 3.7). The 
goal of this exercise is purely exploratory here; by no means we are trying to make 
confirmatory statements on the different investigated IRF model architectures. We are 
just trying to get a feeling of the effects of different input time series and model 
architectures on the estimated trends. 
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The groundwater recharge calculations used here were performed in the framework of 
the work by Lu (in prep) and the Future floodplains project 
(https://www.futurefloodplains.be/). The approach builds further on that of Di Ciacca 
(2020), and develops a database of recharge time series, based on a set of process 
models representing all possible relevant combinations of land cover, soil type, and 
groundwater table depth. Different from the work of Di Ciacca is the inclusion of the curve 
number method (Cronshey 1986) for accounting for surface runoff. The numerical code 
used here is HYDRUS-1D (Simunek et al. 2005) which solves the modified form of the 
Richards' equation. Groundwater recharge was simulated for the period 1990-01-01 to 
2019-12-31, with daily time steps, for the main land cover and soil type combinations in 
the Zwarte Beek, Mombeek and Dijle catchments, while here we use the resulting 
database for the Zwarte Beek catchment, as it is located closest to the H3O-plus project 
area. 
 
Figure 3.8 provides an idea on the workflow, which next to the HYDRUS-1D model also 
involves reference evapotranspiration calculations (FAO 56 Penman-Monteith, using the 
REF-ET software (Allen 1992)) from meteorological time series like air temperature, 
relative humidity, wind speed etc., and a canopy water balance model for different 
vegetation covers (Leterme et al. 2012). In the HYDRUS-1D model, root water uptake 

Figure 3.7 Map with the locations of the 21 VMM indicator wells. Background data: © 
OpenStreetMap contributors. 
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parameterization of these vegetation covers is also implemented, as well as that of the 
unsaturated soil hydraulic properties, which is based on the Aardewerk database (Van 
Orshoven et al., 1988). The top boundary of the soil column in HYDRUS-1D is exposed 
to the transient forcing by throughfall, potential evaporation and potential crop 
transpiration. The bottom boundary is implemented as a constant head boundary (free 
drainage) with a constant groundwater depth, up to 5 m below the soil surface. 
 
A more detailed description is considered out of scope here. The general idea is just that 
this approach gives us a time series database, of recharge in function of land cover, soil 
type and water table depth. As it is a process modelling approach, the recharge derived 
here results from all kinds of non-linear processes in the unsaturated zone. Important to 
realize, however, is that these are all forward model simulations, working with best 
estimates of the parameter values, without any calibration whatsoever. Hence, it is likely 
that some rescaling of the resulting time series is for instance required for a specific site. 
 

For identifying the different impulse-response function model architectures, we use a four 
letter abbreviation. The first letter represents the model inputs, where R is the meadow 
on sand with a groundwater table at 2 m depth recharge time series from the process 
model results database, P is the combination of the first three principal components of 
that database, and M means the more traditional meteorological time series of 
precipitation and evapotranspiration. Non-linear recharge estimates, other than those 
provided by the process model results database (so similar to the approaches by Long 
(2015) and Collenteur et al. (2021)), were initially also foreseen, but given time 
constraints, they are not included here. Hence, the second letter in this document is 
always L, for linear estimation of the impulse. The third letter indicates whether we 
consider constant, time-invariant impulse-response function (C), or a time-variant 
impulse-response function (T), while the fourth and final letter is N in case no attempt at 
addressing temporal correlation in the residuals is made, while G signifies that the model 
error is simulated explicitely using a Gaussian process. 

Figure 3.8 Workflow for the recharge process modelling. 
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In all of the investigated architectures, the convolution output is considered to represent 
the explained part (by recharge or meteorology) of the groundwater level time series. 
What is considered to be the unexplained part depends on the approach: 
 

1. In case nothing is foreseen to address temporal dependence of residuals, the 
difference between the convolution output and the observed levels is considered 
to represent the unexplained part. This is in fact lumping the model and 
measurement errors together. For quantifying this unexplained part on the 
complete time series, linear interpolation is used. 

2. In case of the Gaussian process approach, the Gaussian process projection to 
the full time series represents the unexplained part. This represents the model 
error and does not include the measurement error. 

 
All possible combinations are tested for exploratory purposes: 
- RLCN: single recharge time series with response that is constant in time; 
- RLCG: as RLCN but with a Gaussian process; 
- RLTN: singel 
- RLTG: as RLTN but with a Gaussian process; 
- PLCN 
- PLCG: as PLCN but with a Gaussian process; 
- PLTN 
- PLTG: as PLTN but with a Gaussian process; 
- MLCN 
- MLCG: as MLCN but with a Gaussian process; 
- MLTN 
- MLTG: as MLTN but with a Gaussian process. 
A brief overview of the different resulting architectures is provided in Appendix C. This 
provides a clear idea on the different approaches and how they compare to each other. 
 
Time series analysis is performed for both the explained and unexplained parts from the 
different model architecture results, as we are interested in both explained (by 
meteorology) as well as unexplained (model error and anthropogenic effects) trends. The 
procedure implemented here consists of the following steps: 

1. First, STL decomposition is performed using an implementation robust to 
missing values (Hafen 2016), with seasonal and trend windows of seven 
years, and quadratic polynomials for the local regression. For the unexplained 
part, the results are omitted for dates without any level observation within a 
month of the considered date, under the assumption that it is impossible to 
know what type of anthropogenic impact may have been in effect for such 
gaps in the observation time series. This operation results in trend, seasonal 
and remainder components for both the explained and unexplained parts of 
the time series. 

2. Next, the trend and seasonal strength STL features of the explained and 
unexplained parts are calculated, according to their definition in Hyndman & 
Athanasopoulos (2021), mainly for visualization purposes (see Section 2.2). 



  

 

 

 

Page 17 of 89    

3. Finally, breakpoint detection is performed on a smoothed version of the 
derivative of both explained and unexplained trend components, using the 
method by Zeileis et al. (2002, 2003) for dating structural changes in linear 
regression models, again masking some data around gaps in the time series. 

 
The R packages specific to the used methodology have been explicitly mentioned. Other 
packages used in the workflow and pre- and post-processing of results deserve to be 
mentioned as well: tidyverse (Wickham et al. 2019), here (Müller, 2020), fs (Hester & 
Wickham 2020), arrow (Richardson et al. 2021), sf (Pebesma 2018), sfheaders (Cooley 
2020), nomnoml (de Vries & Luraschi 2020), RcolorBrewer (Neuwirth 2014), future 
(Bengtsson 2020), patchwork (Pedersen 2020), ragg (Pedersen & Shemanarev 2021), 
and ggridges (Wilke 2021) packages. 

3.1.2 Germany 

The German part of the H3O-Plus area lies in the land North Rhine Westphalia.  

3.1.2.1   Organisation 

The department for Nature, Environment, and consumer protection of North Rhine-
Westphalia (LANUV, Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-
Westfalen, https://www.lanuv.nrw.de/) is an important organisation in the groundwater 
quantity monitoring of the land of North Rhine-Westphalia (NRW). In the Roer Valley 
Graben, additional monitoring is carried out by the waterboard Erftverband 
(http://www.erftverband.eu/), the mining industry, and public water supply organisations. 
Monitoring data is made available through the webportal ELWAS 
(http://www.elwasweb.nrw.de/).  
There are 6683 monitoring wells in the Roer Valley Graben of which 3698 are active. 

3.1.2.2   Analysis method 

Various methods for trend assessment are used: 
- Regression analysis; 
- Correlation analysis; 
- Statistical testing; 
- Multi-channel Wiener-filter analysis. 
 
In the regression analysis a regression line is fitted through the groundwater head 
observations and the significance of the resulting trend is determined (Figure 3.9). 
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Figure 3.9: Two examples of regression analysis with (top) and without (bottom) a statistically 
significant trend). 

The correlation analysis does not examine the existence of a trend in individual time 
series but shows whether multiple time series have the same behaviour (Figure 3.10). 
 

Figure 3.10: Example of correlation analysis. 

The statistical test examines the relation between a target time series and reference time 
series in more detail (Figure 3.11). 
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Figure 3.11: Example of statistical test. 

The Multi-channel Wiener-filter also uses reference time series to get more insight in a 
target time series (Figure 3.12). 
 

Figure 3.12: Example of multi-channel Wiener-filter analysis. 

This enables a more refined determination of the trend compared to the regression 
analysis (Figure 3.13). 
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Figure 3.13: Example of trend from regression analysis and Wiener-filter analysis. 

The regression analysis and correlation analysis are simple to apply but the conclusions 
are not be used easily. The statistical test and the Multi-channel Wiener-filter analysis 
are more complex to apply, but lead to more sophisticated conclusions, that are more 
suitable for the groundwater management. 

3.1.2.3   Visualization method 

The web interface of the online groundwater database of the land North Rhine-
Westphalia (https://www.elwasweb.nrw.de/elwas-web/index.jsf) has the option to 
visualize groundwater head time series (Figure 3.14). 
 

Figure 3.14: Example of time series in the ELWAS web application. 
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Figure 3.15 shows a visualization of the status of groundwater heads with respect to 
targets for realization of ecological conditions. 
 

Figure 3.15:Example visualisation of realization of target heads for the Garzweiler monitoring in 
2018 for the statistical test (left) and the multi-channel Wiener-filter analysis (right). 

3.1.3 Netherlands 

The Dutch part of the H3O-Plus area is located in the provinces of Noord-Brabant and 
Limburg. 

3.1.3.1   Organisation 

The Provinces are responsible for the general purpose of monitoring of groundwater 
heads. The waterboards and municipalities have monitoring networks to support their 
own water management tasks. They usually put more emphasis on the phreatic 
groundwater table. Nature organisations have dedicated groundwater monitoring 
especially for Natura2000 and Habitat directive areas. Water companies also monitor 
groundwater, prescribed by their groundwater abstraction permits and prompted the 
information need of their own operations. Monitoring on a project basis is carried out for 
projects with a potential important impact on the groundwater, e.g. large river works and 
construction sites. 
As of the first of January 2021, groundwater heads are part of the National Key Registry 
of the Subsurface (see https://basisregistratieondergrond.nl/english). This means that all 
government organisations have to submit the head measurements they acquire and they 
have to consult the registry when information on groundwater heads is relevant. The 
groundwater data in the registry is publicly available together with the existing data in the 
national subsurface database (https://www.dinoloket.nl/en/subsurface-data). 
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3.1.3.2   Analysis method 

In water management and policy development and evaluation in the Netherlands, trends 
in groundwater levels are separated in natural and anthropogenic changes. Precipitation 
and reference evaporation (Makkink) are considered natural influences. Anthropogenic 
influences include land-use changes (e.g. conversion of agricultural to urban land-use), 
water management changes (e.g. implementation of drainage), groundwater extraction 
(e.g. for drinking water), and changes of land-use (e.g. higher crop yields in agriculture). 
However, concern is growing about (ground)water availability since the dry summer of 
2018 (in the East and South of the country, 2019 and 2020 were relatively dry also). 
Therefore, trends of the groundwater levels are also considered independently of the 
cause. 
In policy evaluation and reporting for the EU Water Framework Directive, the natural 
fluctuation of groundwater levels usually is determined by transfer-noise modelling of 
groundwater head measurement time series with precipitation and Makkink evaporation 
as explaining variables. The remaining variation usually is assumed to be caused by 
anthropogenic influences. The analysis is carried out per groundwater body (Figure 
3.16). 
 

Transfer-noise modelling splits the groundwater level time series into a deterministic part 
and a stochastic part (Figure 3.17). The deterministic part represents the variation due 
to the specified explanatory variables.  
TNO Geological Survey of the Netherlands uses the software Metran (Berendrecht & 
van Geer, 2016) for the time series modelling (Zaadnoordijk et al., 2019). For the models 
on the ‘groundwatertools’ website (http://www.grondwaterstandeninbeeld.nl), these are 
precipitation and potential evapotranspiration. It is possible to include additional 
influences, like surface water levels or a general trend. The difference between the 
deterministic part and the measurements is called the model residual. 
 

Figure 3.16 River basins in the Netherlands (left) and the groundwater bodies in the Dutch part 
of the Meuse river basin (right). 
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A noise model is used for the stochastic part. The purpose is to remove the 
autocorrelation in the residuals. The smaller the time steps between the measurements, 
the larger the autocorrelation. The existence of autocorrelation decreases the reliability 
of the model. We use a noise model with an exponential decay. The inverse of the noise 
model is applied to the residuals to obtain so-called “innovations”. 
 

Figure 3.17 Setup of transfer-noise modelling of groundwater head time series in Metran. 

The explanatory variables are convoluted with an impulse response function (see e.g. 
Kreyszig, 2012): the value of each day is multiplied by the response function and the 
results are summed. An incomplete gamma distribution is used for the impulse response 
function (Berendrecht & Van Geer, 2016). It has three parameters, a multiplication factor 
A* and two shape parameters a and n (Besbes & de Marsily, 1984). For the 
groundwatertools website, the same function is used for precipitation and potential 
evapotranspiration except for a factor. This leads to five parameters to be optimized: 
three of the precipitation response, one evaporation factor, and one noise model 
parameter. The parameters are determined by a minimization procedure for the 
innovations. 
The resulting time series models are evaluated using model evaluation criteria among 
which the explained fraction of the groundwater variation (Zaadnoordijk et al., 2019). 
Three classes are distinguished: bad models, reasonable models, and good models. The 
bad models are not shown on the website. The analysis in this report uses only the good 
models. 
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Additional explaining variables can be used in the transfer-noise modelling of head time 
series, e.g. when a specific effect needs to be determined. Figure 3.18 shows an 
example with the water level in the Meuse river as third explaining variable. 
 

 

3.1.3.3   Visualization method 

The reports for the Water Framework Directive visualize groundwater heads using 6 year 
averages of meteo corrected time series. These can be either absolute values, or values 
relative to a reference period. 
Metran can be used for the meteo correction, if Metran can determine a good time series 
model for the head time series with precipitation and evaporation as explaining variables. 

Figure 3.18 Metran model with the river water level of the Meuse as 
explaining variable next to precipitation and evaporation 
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Using this model, absolute values of meteo corrected heads are based on a reference 
precipitation and evaporation. This so-called ‘structural level’ 𝜙௦ is calculated as: 

𝜙௦ = 𝑀଴,௉𝑃௥௘௙ + 𝑓𝑀଴,௉𝐸௥௘௙ + 𝑏 
Where 𝑃௥௘௙ is the refence precipitation, 𝐸௥௘௙ is the reference evapotranspiration, 𝑀଴,௉ is 
the total precipitation response of the Metran model, 𝑓 is the evaporation factor of the 
Metran model, and 𝑏 is the base level of the Metran model. 
The relative values can be determined from the residuals of the Metran model which 
reflect the head variation which is not caused by precipitation and evaporation. The 
averages of the residuals are then calculated for six year periods, and are shifted 
vertically such that the average for the reference period is zero (e.g. Figure 3.19). 
 

 
The public database (https://www.dinoloket.nl/ondergrondgegevens) provides a very 
simple visualization of the time series (Figure 3.20). 

TNO-GSN makes visualizations publicly available based on Metran models (see 
http://www.grondwaterstandeninbeeld.nl). The visualizations include the contribution of 
precipitation and evaporation, the regime curve, and various statistics (Figure 3.21 - 
Figure 3.23) (also see Zaadnoordijk et al., 2019). 

Figure 3.19 Six year averages of the residu of a time series model for B57H0047003 (from: Leunk 
& van Doorn, 2017). 

Figure 3.20 Visualization of time series in the National 
subsurface database. 
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The location is shown on a map and the piezometers are shown with their elevation and 
an option to select another piezometer of the monitoring well. For the selected 
piezometer, the time series is shown with the option to include the surface level (Figure 
3.22). 
 

The measurements of all piezometers can also be viewed in a single graph (Figure 3.23). 

Figure 3.21 overview from tool: location and elevation of piezometers. 

Figure 3.22 tool: time series visualization head with surface elevation. 
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The Metran time series model for the head time series together with precipitation and 
evaporation is evaluated using several quality criteria (Zaadnoordijk et al., 2019). If the 
model fulfils the basic criteria, the separation of the groundwater variation into 
contributions of precipitation, evaporation and other influences is shown (Figure 3.24). 
Also the precipitation and evaporation contributions over time of can be visualized. 
 

The impulse response functions can be regarded as signatures of the groundwater 
system. They are shown as a graph and with some characteristic values such as the 
total response M0 and the time to the median response t50 (Figure 3.25). 
 

Figure 3.24 tool’s visualization of influences in time and relative to the variation not explained by 
Metran. 

Figure 3.23 visualization in tool of head series from all piezometers of a monitoring well. 
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The advanced information that can be shown are related to the model parameters and 
the statistics that are used for the quality criteria to judge the model (Figure 3.26). 
 

If the model fulfils all quality criteria, then also a regime curve is shown (Figure 3.27). 
The regime curve gives the long term median variation of the head over the year together 
with percentiles. 

Figure 3.25 visualization of impulse response functions in tool. 

Figure 3.26 visualization of residues, innovation and autocorrelation innovation for check of
Metran model. 
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The regime curve allows to rate measurements with respect to the normal seasonal 
variation. The percentiles together with the absolute value of the measurements provide 
extra insight in the occurrence of extreme groundwater levels. 
  

Figure 3.27 tool visualization: regime curve. 
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3.2 Heads for entire H3O-PLUS area 

 
For the heads of the entire H3O-PUS area, Metran has been used together with 3-d 
visualization of characteristics of time series models. More detail is given in the 
paragraphs below. 

3.2.1 Metran: transfer noise modelling of groundwater head time series 

Metran (see Figure 3.17 and Subsubsection 3.1.3.2  has been used for the modelling of 
groundwater head time series using the meteorologic information collected in the project 
database (see Chapter 2).  

3.2.1.1   Metran output used 

Two characteristics of the precipitation response will be used: the total response (the 
final unit step response, which can be calculated as the zeroth moment of the impulse 
response function) and the average response time (equal to the ratio of the first moment 
and the zeroth moment). These characteristics for the precipitation impulse response 
reflect the groundwater system.  
 
Furthermore, the residuals are investigated for trends. The residuals are the differences 
between the model and the measurement and are assumed to represent the 
anthropogenic influences on the groundwater (cf. Figure 3.28). 
 

However, the presence of a trend in the head series which is not related to the 
explanatory variables makes it more difficult for Metran to determine a good time series 
model. The chance of determining a good time series model increases when the trend 
is added as an explanatory variable. This is illustrated by Figure 3.28 and Figure 3.29. 
The model of Figure 3.28 with only precipitation and evaporation cannot explain the large 
trend in the measurements, and thus the residuals (difference between models and 

Figure 3.28 trend in residu of Metran model with precipitation and evaporation for piezometer 
B58G0045002. 
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measurements) are quite large. Figure 3.29 shows a model that also has a trend and 
now the residuals are smaller and lie more nicely around zero.  

3.2.1.2   Temperature instead of evapotranspiration in Metran 

A comparison has been made between the use of evapotranspiration and temperature 
in addition to precipitation in Metran models, because no evapotranspiration data is 
available for the German part of the H3O-PLUS area. 
The time series from the Dutch national database (available through 
https://www.dinoloket.nl/en/subsurface-data) for the period 1994-2019 inside the 
H3Oplus area have been selected for the comparison. A total number of 3674 time series 
were available, with an average of 2400 groundwater head values per series (minimum 
38, maximum 7094). 
These timeseries have been used to compare time series models based on precipitation 
and Makkink evaporation with models having precipitation and average daily 
temperature as input. 
The models with Makkink evaporation have been run with the option built into Metran to 
automatically select precipitation and evaporation data from the nearest precipitation or 
weather station of the Royal Dutch Meteorological Institute (KNMI). 
The models with temperature have been run with precipitation also from the nearest 
KNMI precipitation station, but with the temperature from the KNMI weather station in 
Eindhoven. The results are shown in Appendix B. 

3.2.2 Trend analysis of groundwater head time series 

In addition to the Metran models, the groundwater head series themselves have been 
tested for trends. The Mann-Kendal test has been used for the existence of a significant 
trend. If a significant trend exists, it was quantified using the Sen procedure, which is 
insensitive to outliers. 

Figure 3.29 Metran model with precipitation, evaporation, and trend for piezometer 
B58G0045002. 
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Trends have been determined for the period 2005-2020 and the period 1995-2010. A 
few time series with good Metran models have been selected, for which the trends in the 
contribution from precipitation and evaporation as well as the trend in the model residue 
have been determined. The model residue is assumed to be equal to the contribution of 
other (anthropogenic) influences. These trends have been compared to determine the 
cause of the trends in the groundwater heads. 
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4 RESULTS 

4.1 Analysis per country 

This chapter presents the results obtain with the national procedures that have been 
presented in section 3.1. 

4.1.1 Belgium 

4.1.1.1   Individual model architectures 

This section provides an overview of the results obtained with the different model 
architectures, using an example well, namely 1-0389_1. The same figures for all other 
wells and architectures are available in appendix. The figures here contain a lot of 
information, and hence some explanation is required first at this point: The observed 
levels (black points), explained and unexplained parts (trend + seasonal + remainder), 
and their trend and trend + seasonal components are displayed in subfigure (a). 
Breakpoints are indicated as darker green dots on the trend lines. The light gray line in 
the panel for the explained part represents the sum of the explained and unexplained 
parts here. Auto-correlation functions are provided in subfigure (b), where the residual is 
only relevant in case of the Gaussian process approach (and should preferably exhibit 
no, or little, temporal auto-correlation. An overview of different variances is provided in 
subfigure (c), where the explained versus unexplained variances, as well as their 
different components, can give an idea on the model fit. 
Do note that subfigures (b) and (c) contain no information on the residual for the 
architectures without a Gaussian process, as the unexplained part basically represents 
the model residual (with linear interpolation in between groundwater level observations). 
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The RLCN model architecture results are displayed in Figure 4.1. While already a large 
part of the time series is explained by the recharge for meadow on sand with a 
groundwater table at 2 m depth, the seasonality of the unexplained part is clearly of the 
same order of magnitude. This may indicate that the selected recharge time series may 
not be the most adequate one for this well. The auto-correlation functions clearly show 
there is autocorrelation in the model error (here the unexplained part), and hence 
suggest the results may potentially be biased (although this bias is likely limited with 
regularly spaced observations). The variances suggest that indeed the explained and 
unexplained variances are not very different, and potentially better fits may be obtained. 
  

Figure 4.1 Results for the RLCN model architecture, for example well 1-0389_1. 
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The RLCG model architecture results are displayed in Figure 4.2. Here apparently 
something went wrong, and the Gaussian process takes up most variability in the time 
series, at the cost of the explained part, which is basically absent. This may indicate 
stronger regularization is required for the Gaussian process variance (i.e. force it more 
to lower values) then currently applied. Alternatively, regularization specifically for the 
seasonal part of the Gaussian process may be appropriate as well (under the assumption 
that all seasonality should be explained by meteorology, which in fact may not be true), 
but that would require the time series decomposition to be integrated in the model. The 
results do show however, that the residual auto-correlation is basically removed by the 
Gaussian process, except maybe for the first few lags, but the auto-correlation estimates 
there are very erratic because of the low number of data points involved in the calculation 
(i.e. only observation dates are used, while the functions for the explained and 
unexplained parts are smoother because of the continuous time series). 
 

The RLTN model architecture results are displayed in Figure 4.3. The difference with the 
RLCN results is however very small, which indicates time-variance of the IRF is not really 
supported by the data in this case, or cannot compensate for any bias caused by the 
selection of a single recharge time series for specific conditions. 

Figure 4.2 Results for the RLCG model architecture, for example well 1-0389_1. 
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Figure 4.3 Results for the RLTN model architecture, for example well 1-0389_1. 
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The RLTG model architecture results are displayed in Figure 4.4. This model does not 
perform as well as the RLCN and RLTN architectures, as evidenced by the smaller 
variance of the explained part, than that of the unexplained part. The time-variance 
apparently prohibits the explained part to complete deteriorate in this case, as happened 
with the RLTN architecture. Again, some changes to the Gaussian process model 
approach may be required here, but it does remove the auto-correlation of the residuals. 
 

 
  

Figure 4.4 Results for the RLTG model architecture, for example well 1-0389_1. 
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The PLCN model architecture results are displayed in Figure 4.5. The increased flexibility 
in determining recharge by use of the principal components of the full dataset apparently 
results in a considerable increase of the explained variance. Also, the seasonality in the 
unexplained part is less obvious than in the previous architectures, except maybe in the 
last few years. Hence, this seems to be a better approach for leveraging a recharge 
database. Of course, selection of recharge based on specific conditions for a specific 
well could be done as well, but for the current exercise, land cover, soil type and 
groundwater table depth for the investigated wells was assumed to be unknown. 
Moreover, if a larger infiltration area affects the groundwater levels of a certain well, the 
land cover and soil type at the well location may not even be the most appropriate one, 
and this approach may still be superior. 
 

 
  

Figure 4.5 Results for the PLCN model architecture, for example well 1-0389_1. 
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The PLCG model architecture results are displayed in Figure 4.6. The model 
performance seems again worse here, likely again due to the Gaussian process that is 
introduced. The unexplained part again clearly exhibits seasonality, and the variance of 
the explained part is reduced quite a bit. 

 
  

Figure 4.6 Results for the PLCG model architecture, for example well 1-0389_1. 
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The PLTN model architecture results are displayed in Figure 4.7. By introducing the time-
variance here, the variance of the unexplained part seems to be reduced somewhat, 
compared to that of the PLCN architecture. The difference is however minor. 
  

Figure 4.7 Results for the PLTN model architecture, for example well 1-0389_1. 
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he PLTG model architecture results are displayed in Figure 4.8. Introducing the Gaussian 
process model, as well as the time-variance seems to deteriorate the model performance 
again in this case, with clear seasonality and larger variance for the unexplained part, 
and lower variance for the unexplained part. 
  

Figure 4.8 Results for the PLTG model architecture, for example well 1-0389_1. 



  

 

 

 

Page 42 of 89    

The MLCN model architecture results are displayed in Figure 4.9. The use of the 
meteorological time series seems to better capture the fluctuations during several years 
for this particular well. The variance of the explained part is again a bit larger than the 
maximum obtained for the principal component approach, and seasonality in the 
unexplained part is not that obvious. 

The striking difference for the last few years, with the previous results, suggests that 
maybe the meteorological data used for preparing the recharge database, which comes 
from different stations than the data used here, may not be very representative of what 
happened in the H3O-plus project area, or at least this well. Moreover, the time series 
used for the recharge database are composite time series, and not all source data may 
be equally reliable. Hence, a fair comparison between both approaches is difficult at this 
stage (which is one of the reasons we keep things exploratory here). 
  

Figure 4.9 Results for the MLCN model architecture, for example well 1-0389_1. 
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The MLCG model architecture results are displayed in Figure 4.10. The introduction of a 
Gaussian process model does seem to increase the explained variance in this case, 
while again removing the residual auto-correlation. The unexplained part however does 
show some seasonality, with a rather unexpected phase shift (lower values in winter, 
larger in summer). 
  

Figure 4.10 Results for the MLCG model architecture, for example well 1-0389_1. 
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The MLTN model architecture results are displayed in Figure 4.11. By introducing the 
time-variance here, the variance of the unexplained part seems to be reduced somewhat, 
compared to that of the MLCN architecture. The difference is however minor. This is 
similar to the difference between the PLTN and PLCN architectures. 

 
  

Figure 4.11 Results for the MLTN model architecture, for example well 1-0389_1. 
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he MLTG model architecture results are displayed in Figure 4.12. When combining the 
time-variance and the Gaussian process model, in this case, performance seems to 
deteriorate again, resulting in a larger variance for the unexplained part, than that for the 
explained part. 
  

Figure 4.12 Results for the MLTG model architecture, for example well 1-0389_1. 
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4.1.1.2   Comparison of results from different model architectures 

While the above figures provide some feeling of the behaviour of the different individual 
model architectures, it is rather difficult to compare them. Moreover, we only looked at a 
single well, which may not be very representative of the performance of the different 
architectures on the complete set of 21 indicator wells. Hence, we try to illustrate here 
how the variances of the explained and unexplained parts are related, across the 
different architectures and wells, as well as the STL features derived from the time series 
analysis, i.e. the seasonal and trend strengths. 
 
Figure 4.13 provides an idea on how the variances of the explained and unexplained 
parts relate to each other, across the different model architectures, and displaying the 
full set of 21 wells. The MLCN and MLTN architectures seem to provide the largest 
explained and smallest unexplained variances, closely followed by the PLCN and PLTN 
architectures. The MLTG and PLTG models seem to behave similarly in certain cases, 
but there is a large spread, and several data points exhibit unexplained variance larger 
than the explained one. The RLCG and RLTG models clearly perform badly in a 
systematic way, as most of the data points show much larger unexplained than explained 
variance. 
 

Figure 4.13 Unexplained vs. explained variances per architecture; data points in grey; architecture 
data points in black; example well in green). 
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The variances for the example well are shown separately in Figure 4.14. These basically 
confirm these observations. 
 

The variances themselves do however not relate directly to the model performance. The 
unexplained and explained parts can also be positively or negatively correlated, making 
interpretation more difficult. To relate the variance of the explained part with the actual 
performance of the different architectures in terms of the explained part fitting the 
observed groundwater levels, we provide a scatterplot of the Nash–Sutcliffe efficiency 
versus the explained variance in Figure 4.15. This does reveal that the MLTN 
architecture is performing best, closely followed by the MLCN one, and with somewhat 
systematically lower NSE values, the PLCN and PLTN architectures. Also, it is clear that 
larger explained variance does not necessarily mean better performance. 
 
 
 
 
 
 
 
 
 

Figure 4.14 Variances for the example well 1-0389_1, for the explained and unexplained parts, in 
function of the different model architectures 
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Figure 4.16 and Figure 4.17 provide a similar idea on the seasonal and trend component 
strengths. The MLCN and MLTN architectures show low unexplained and high explained 
seasonality, while MLTG is close, and certain data points of the PLCN and PLTN 
architectures are very similar as well. The architectures using the selected recharge time 
series clearly do not succeed in achieving large explained seasonality. Trend strengths 
vary more, and are typically higher for the principal component based architectures, both 
for the explained and unexplained parts. 

Figure 4.15 Nash–Sutcliffe efficiency (NSE) versus the explained variances per architecture; grey: 
all data points; black: individual architecture data points; green: example well. 
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Figure 4.16 Unexplained vs. explained seasonal and trend component strengths per architecture; 
gray: all data points; green: seasonal component strength; red: strength of trend. 

Figure 4.17 Seasonal and trend component strengths in the explained and unexplained parts per 
architecture for example well 1-0389_1. 
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Figure 4.18 allows comparing the different explained and unexplained trend components 
to each other. Except for the RLCG architecture, most of the trends (both the explained 
and unexplained) are rather consistent within one of the three groups using different 
input data sets. Differences between the architectures using a single recharge time 
series, and those using the principal components also seem to be minor, suggesting the 
trend estimates are in fact rather robust with respect to the used models. The differences 
with the meteorological data-based architectures are larger, however, but this may at 
least in part be due to the different meteorological time series used for the process 
modelling. The same figures are available for all other indicator wells in appendix C. 
 
 

4.1.1.3   Conclusions from IRF analysis of Belgian series 

While many of the results remain relatively unexplored at this point (e.g. fitted impulse-
response functions (IRF), comparison of recharge estimates from the architectures using 
meteorological input data with the process model-based recharge), an important 
conclusion from this exercise is that it seems the trend estimation, which is ultimately the 
goal, seems to be rather robust, and does not vary a lot over the different model 

Figure 4.18 Explained and unexplained trend components per architecture for example well 1-
0389_1. 
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architectures that were tested. The main differences that we see are those between the 
architectures using meteorological time series as input and those using the process 
model recharge database, but these may, at least in part, be related to different 
meteorological data sources that were used. 
 
Furthermore, the introduction of Gaussian processes to explicitly model the unexplained 
part of the time series seemed to effectively remove the residual auto-correlation. In 
many cases, however, the model performance was affected, and we would recommend 
modifying the approach in future, by allowing larger short-term variability, through the 
introduction of e.g. a random component. Moreover, attempting to introduce 
regularization with respect to the seasonal component of the unexplained part, or 
correlation with the explained part may be interesting as well. 
 
The use of a recharge database seems promising as well, but a more fair comparison 
starting from the same meteorological time series is required for drawing real 
conclusions. The principal component approach proved to be useful, but does not allow 
for feedback of the simulated water table depth on the used recharge. A simple two-way 
coupling could be explored in future, where for instance a first groundwater level estimate 
assuming an average depth to the groundwater table, could be used for updating the 
input recharge times series. Especially for very shallow water tables this could improve 
the results considerably. 
 
Concerning the investigated architectures, non-linear estimates of recharge other than 
those based on process modelling, like those by Long (2015) and Collenteur et al. 
(2021), could be explored as well in future, to make this exercise more complete. 

4.1.2 Germany 

No further results are produced for North Rhine-Westphalia but the data are being 
interpreted in section 4.2. 

4.1.3 Netherlands 

The data from Zaadnoordijk and Lourens (2019) have been used to create maps and 
sections with results of Metran models. Figure 4.20 shows the median precipitation 
response time t50 (days) for the piezometers with good Metran models in the upper 
regional aquifer as defined in the groundwater model of the national hydrological model 
of the Netherlands Hydrological Instrument (http://nhi.nu/) 
 
Within the H3O-PLUS project no further analyses have been performed specifically for 
the Netherlands. The Metran results for the H3O-PLUS head database are presented in 
Section 4.2.1. 
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Figure 4.19 section around Y=392500 with median precipitation response time (days) from good 
Metran models. 

Figure 4.20 map of median precipitation response time (days) for the upper regional aquifer (as 
defined in the national hydrological model NHI-LHM. 
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4.2 Analysis for entire H3O-PLUS area 

The selected time series from Belgium, Germany and the Netherlands have been 
simulated with Metran. The Metran models give the relation between the groundwater 
heads and the meteorological input: precipitation and either evaporation or temperature. 
Appendix B shows that Metran determines a very similar the precipitation response with 
the use of evaporation or temperature. Also, the approximation of the observed heads is 
quite similar. Therefore, the Metran results for Germany (based on precipitation and 
temperature) can be shown together with those for Belgium and the Netherlands (based 
on precipitation and evaporation). 
 
Most of the figures in this section are screen captures from the H3O-Plus web viewer 
https://dev.grondwatertools.nl/gwsinbeeld/login. It has been created based on the Dutch 
tool for spatial and temporal patterns of groundwater heads 
http://www.grondwaterstandeninbeeld.nl which uses the heads from the national 
subsurface database https://www.dinoloket.nl/en/subsurface-data. 
 
The tool allows selections based on:  
- Period of the measurements; 
- Depth range or Geological Formation of the piezometer. 

For each piezometer, properties of the time series model or trends of the measured 
heads for different periods can be indicated. 

Topographic maps and aerial imagery are available as background in plan view. Figure 
4.21 shows an example with a selection based on a geological Formation with the 
median response time of the precipitation response that has been determined in the 
Metran models for the head time series in the piezometers within the Sterksel 
Formation. The background is the aerial imagery. 
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Figure 4.21: Median response time of precipitation for piezometers in the Sterksel Formation from 
the GeoERA Groundwater Measurements Viewer. 

Cross sections are shown with the geological formations as background and can be 
annotated additionally with groundwater abstractions, land use, groundwater age zones, 
and a brackish-saline interface (Figure 4.22). This figure shows the vertical head 
differences between the subsequent piezometers in multi-piezometer monitoring wells. 
The coloured bars are drawn between the filter bottom of a piezometer and the top of 
the next deeper one. The colour indicates the flow direction: red downward, blue upward 
and yellow neutral. There are no multi-level wells in the Southeast (the right hand side 
of the cross section) to show the downward flow here. Moving to the Northwest, the blue 
bars indicate the upward flow toward the river Meuse. Further to the Northwester, there 
is upward flow from the Kiezoloöliet Formation (brown colours) to the Waalre Formation 
(dark yellow and orange) as well as downward flow from the overlying Sterksel Formation 
(reddish colours) and Boxtel Formation (bright yellow) down to the Waalre Formation, 
mostly related to the groundwater extractions in the Waaler Formation.  
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Figure 4.22: Cross section with head differences between subsequent piezometers in multi-level 
monitoring wells from the GeoERA Groundwater Measurements Viewer. 

4.2.1 Metran results for entire H3O-PLUS area 

 
The GeoERA Viewer (https://www.grondwatertools.nl/gwsinbeeld/login) provides access 
to the H3O-PLUS groundwater head database and the Metran models (Figure 4.23). 
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The viewer allows selections based on depth or connected geological formation of the 
piezometers and the period of available measurements. 
Figure 4.24 shows the piezometers for various depths with an indication of the quality of 
the Metran model (grey: bad model – ‘no model’, yellow: reasonable model – 
‘explanatory model’, green: good model – ‘groundwater dynamics). 

Figure 4.23 Observation wells in H3O-PLUS database with quality of time series model for upper 
piezometer 
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The number of piezometers decreases with depth (see Figure 4.24). Also the number of 
successful time series models decrease with depth. For practically all piezometers below 
-250 m NAP, no time series model could be derived.  
 
Figure 4.25, Figure 4.26, and Figure 4.27 show characteristics of the precipitation 
response in a long cross section from the North to the Southeast of the H3O-PLUS area. 
 
 
 
 

Figure 4.24 Model quality per depth range (top row: +40 to 0mNAP, -1 to -49, -51 to -99; middle row: -
100 to -200, -200 to -300, -300 to -400; bottom row: -400 to -500; -460 to -540 mNAP). 
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Figure 4.25 Total precipitation response M0 in Northwest-Southeast cross section. 

Figure 4.26 Median response time t50 in Northwest-Southeast cross section. 
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Figure 4.27 Peak response time in Northwest-Southeast cross section. 
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Figure 4.28 and Figure 4.29 show the median precipitation response time in two cross 
sections in West-East direction  
  

Figure 4.28 Median response time in Northerly West-East cross section. 

Figure 4.29 Median response time in Southerly West-East cross section. 
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4.2.2 Trend analysis of groundwater head time series 

In addition to the Metran models, the groundwater head series themselves have been 
tested for trends. The Mann-Kendal test has been used for the existence of a significant 
trend. If a significant trend exists, it was quantified using the Sen procedure, which is 
insensitive to outliers. 
Figure 4.30 shows the trend in the groundwater heads for the period from the year 2005 
to the year 2020. Many point have a negative trend. For the period from the year 1995 
to the year 2010, the green colours of a positive trend dominate (Figure 4.31). 
 

Figure 4.30 Trend groundwater heads 2005-2020 
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In order to analyse the differences between the two periods and to determine to what 
extend the trends are caused by changes in precipitation and evaporation or by other 
influences, Metran models are investigated for selected piezometers (see subsection 
4.2.3). 

4.2.3 Separation of trends into meteorological and other influences 

The time series for a number of monitoring wells are selected to investigate the trends 
that were determined in subsection 0 together with the timeseries model results 
presented in 4.2.1. 
The selected monitoring wells are: 7-0355 (with 4 piezometers, located in Belgium), 
B51E0078 (with 10 piezometers, located in the Netherlands) and three single piezometer 
wells in Germany: _210401114, _010300387, _010404211. 

Figure 4.31 Trend groundwater heads 1995-2010. 
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Figure 4.32 shows the location of the Belgian monitoring well 7-0355. The elevations of 
the piezometers and the geological formations are given in Table 4.1.  

Table 4.1 Elevation of piezometers of Belgian monitoring well 7-0355. 

Piezometer Top (m+NAP) Bottom (m+NAP) Formation 
1 18.61 16.61 Beegden 
2 -31.39 -33.39 Stramproy 
3 -141.39 -143.39 Kiezoloöliet 
4 -201.39 -203.39 Kiezoloöliet 

 
The timelines for the four piezometers are shown in Figure 4.33. The two upper and the 
two lower ones are relatively close. 
 

 

Figure 4.33 Timeseries for the four piezometers of Belgian monitoring well 7-0355. 

Figure 4.32 Location of Belgian monitoring well 7-0355 (red circle). 
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The head gradient is consistently downward indicating vertical downward flow from the 
surface to the depth of the deepest piezometer. The seasonal fluctuation is stronger in 
the timelines of the two upper. The Metran models for these two are good. The simulation 
and the residue (difference between simulation and measurements) suggests that there 
is downward trend related to precipitation minus evaporation and that the anthropogenic 
influences do not cause a trend (Figure 4.34). 

Metran did not give a reliable model for the third and fourth piezometer. 
However, the rise around the year 2000 and the decline at the end in these series (Figure 
4.33) suggest that these series also contain a major response to the precipitation and 
evaporation (compare left graph in Figure 4.34). 
 
The timelines from a Dutch well in Figure 4.35 show a similar rise around 2000 and 
decline at the end. 
 
 
 

Figure 4.34 deterministic part and residus of the good Metran models for Belgian well 7-0355 
(piezometer 1 and 2). 
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The three German timeseries in Figure 4.36 have quite different behaviours. 
 

For 010404211 a positive trend for 2005-2020 had been determined, while most trends 
for this period are negative (Figure 4.30) due at least in part to the precipitation and 
evaporation (e.g. Figure 4.34). However, this positive trend seems to be caused by an 
error in the height of the last part of the series. When this is corrected (green line in 
Figure 4.36), there no longer is a positive trend. 

Figure 4.35 timeseries for piezometers of Dutch monitoring well B51E0078. 

Figure 4.36 Time series for the German piezometers 210401114 (left), 010300387 (centre), and 
010404211 (right; original series in blue, corrected series in green). 
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5 CONCLUSIONS 

Groundwater head data within the provinces Noord-Brabant and Limburg from the Dutch 
national subsurface data repository (https://www.DINOloket.nl), Flemish data from VMM 
and SCK, and German data within North Rhine-Westphalia from the Erftverband have 
been added, together with precipitation, evaporation, and temperature data from the 
Dutch, Belgian, and German Meteorogical Institutes. 
The report represents the first transboundary visualisation of groundwater heads and 
cross-border patterns of groundwater depletion for the study region based on the 
respective monitoring networks in the participating countries. These visualisations are 
now available through a dedicated transboundary webviewer; the GeoERA Groundwater 
Head Web viewer allows the visualization of groundwater head monitoring with time 
series and derived data like response time to precipitation and trends (Figure 5.1). 
 

 
The results of the current report will be input for the next deliverable (D3.6) where we will 
explore the current protection and management strategies for shallow resources and 
deep paleo resources in the region. For this aim, the consortium cooperates with the 
regional stakeholders involved in the project, using the newly developed information and 
visualization system to help groundwater managers to harmonize groundwater 
strategies.  

Figure 5.1 Cross boundary visualization of trend in groundwater heads (period 2005-2020). The data can also be visualized in cross-

sections through the whole H3O PLUS area rendering a 3D visualization tool for the areas. 
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APPENDIX A – DATABASE 

 

Setup database 

Collection of files each containing one time series 
 

Format for time series files 

.csv in plain ASCII with: 
- Double quotes " " around text strings 
- Period . as decimal symbol 
- No thousands symbol 
- Lengths in meters 
- Date in format: dd/mm/yyyy 
- Time in format: hh:mm  
 

Contents of the .csv file: 
- Line with header for metadata: 

- ID (string) 
- Quantity (“Head”, “Precipitation”, “Makkink”, “Penman-Monteith”, . . .) 
- Unit (“m”, maybe “°C” for temperature instead of evaporation) 
- X coordinate 
- Y coordinate 
- Surface level 
- Top piezometer/measurement point elevation 
- Top filter 
- Bottom filter 
- Projection (for X, Y coordinates) 
- Reference level (for heights) 
- Own aquifer code 
- H3Oplus aquifer code 
- . . . 

- line with metadata 
- Header for time series “Date”, “Time”, “Value”, ? “Qualification” ? 
- Lines with Date, Time, Value, Qualification (e.g. “<” if piezometer dry) 
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APPENDIX B – EVAPOTRANSPIRATION (ET) VS TEMPERATURE 
(T) 

 

B.1 ET vs. T 

The temperature models have all been created with the temperature time series for 
Eindhoven because this is the KNMI weather station that is closest to most of the 
groundwater head monitoring locations (see Table 0.1). 

Table 0.1 KNMI stations used for evaporation data for models of Dutch groundwater head series 
with Makkink evaporation. 

count code station 
1294 370 Eindhoven 
671 350 Gilze-Rijen 
616 380 Maastricht 
448 375 Volkel 
257 356 Herwijnen 
101 391 Arcen 
20 377 Ell 

 
 
The variation of the temperature in the H3Oplus area could cause deviations in the time 
series models. However, Figure 0.1 shows, that the temperature differences between 
the most used weather stations of Table 0.1 are quite small. The patterns are so similar 
that it is unlikely that the temperature variations influence the quality of the time series 
models. 
 



  

 

 

 

Page 73 of 89    

 

Figure 0.1 Temperature for the KNMI weather stations Eindhoven (370), Gilze-Rijen (350), 
Maastricht (380), and Volkel (375). 

Figure 0.2 shows the temperature and evaporation models for B60B0220001 side by 
side. These decent models (REGIMEOK) deviate little from the measurements. The root 
mean squared error (RMSE) is 8.5 and 9.4 cm for evaporation and temperature 
respectively. The total precipitation responses are respectively 12038 and 10397. The 
average precipitation response times (51 and 24) deviate much more from the 1:1 line 
(see section 9.3 of this Appendix B). Still the base elevations of the models are almost 
the same (3218 and 3220 cm for evaporation and temperature respectively). The 
difference in the precipitation response does not lead to visible differences in the 
precipitation contribution. The differences in the evaporation and temperature 
contributions (Figure 0.2, third row, right and left graph) do reflect the differences 
between the shape of the evaporation and temperature graph. They only give small 
differences in the residuals. 



  

 

 

 

Page 74 of 89    

Figure 0.2 Output of model with temperature (left) and with Makkink evaporation (right) for the 
Dutch piezometer B60B0220001. 

 Figure 0.3 shows the time series models for B45E0419001, which differ more in the total 
precipitation response (M0 is 59752 for the evaporation model and 94179 for the 
temperature model – the point is away from the 1:1 line as can be seen in section 9.3 of 
this Appendix B). Together with the differences in average precipitation response times 
(363 and 550 for evaporation and temperature respectively), this gives a smoother 
precipitation contribution with a smaller range for the evaporation model. The base 
elevations of the two models are again almost equal (865 vs. 859 cm) and –surprisingly– 
also the RMSE (25.2 vs. 25.0 cm). So, for this piezometer the difference in shape of the 
evaporation and temperature time lines leads to a different precipitation response, and 
would give more disturbance in the analysis of spatial patterns of precipitation response 
than B60B0220001 of Figure 0.2. 
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Figure 0.3 Output of model with temperature (left) and with Makkink evaporation (right) for 
piezometer B45E419001. 

The parameter fc relates the response function for evaporation or temperature to the 
precipitation response. Therefore, the relation between this factor for the evaporation 
and temperature models will allow for a translation of degrees Centigrade into mm 
evaporation per day. Figure 9 gives the relation for the parameter fc in the decent models. 
The regression line has a slope of 0.1524 and an intercept 0.01677. We need to apply 
this regression to determine the equivalent average evaporation from the average 
temperature, if we want to use the results of a model with precipitation and temperature 
e.g. to calculate average recharge (as average precipitation minus average evaporation 
multiplied by fc) following the method of Obergfell et al. (2019). 
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Figure 0.4 Factor (fc) relating evaporation or temperature response to precipitation response for 
decent time series models with Makkink evaporation (horizontal axis) compared to models with 
temperature (vertical axis) - both REGIMEOK. 

Figure 0.4 shows a number of points with fc equal to 3 for the evaporation models, which 
was the maximum set for this parameter. These models should be discarded because of 
such a physically unlikely value. 
The fc values for piezometer B51E0304001 are also far removed from the regression 
line: 2.503 and 0.854 for the evaporation and temperature model respectively. The time 
series of this piezometer does not have enough measurements to properly constrain the 
responses as can be seen in Figure 0.5, and this model should also be discarded. 
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Figure 0.5 Output of model with temperature (left) and with Makkink evaporation (right) for 
piezometer B51E0304001. 

Figure 0.6 shows that the base elevations in the evaporation and corresponding 
temperature models are very similar. The slope of the regression line is 1.001 and the 
intercept is 9.95. This shows that the conversion of temperature to evaporation derived 
from the regression of the fc factors is sufficient to compare temperature models with 
evaporation models and the temperatures with respect to zero degrees Centrigrade do 
not give an offset in the model elevation. 
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Figure 0.6 Base of decent time series models with Makkink evaporation (horizontal axis) 
compared to models with temperature (vertical axis) - both REGIMEOK. 

Figure 0.6 has tree points in the upper right corner that deviate from the regression line. 
These models are given in Table 0.2. The model furthest from the regression line has an 
evaporation factor with a value of 3 for the evaporation model, which should have been 
discarded as discussed before (B58D2373001). The cause of the deviation for the other 
two is not clear (B57A0067001 and B57A0062002). 
 

Table 0.2 Models with base elevations greater than 3500 cm in the temperature models. 

Name E_base T_base E_fc T_fc E_M0prec T_M0prec E_mu_pr T_mu_pr 

B57A0067001 3648.52 3583.05 1.41 0.16 100232.7 95833.37 412.44 254.35 

B57A0062002 3751.18 3810.79 0.75 0.15 92878.2 52931.16 235.33 140.04 

B58D2373001 3313.47 3749.13 3.00 0.52 400978.7 461373.4 1998.39 2177.20 

 
 

Conclusions 

For the analysis of the result of Metran time series models, it is necessary to only 
consider decent models and to discard models of lower quality. Additionally, it is good to 
discard models with precipitation and evaporation as input for which the evaporation 
factor is equal to the maximum limit value of 3 which was used in the optimization. 
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The precipitation response generally is not influenced by the use of temperature instead 
of Makkink evaporation in transfer noise modelling of groundwater head time series 
within the H3Oplus area in the Netherlands. 
 
For the local climate the regression between temperature (in °C) and evaporation (in 0.1 
mm/d) has a slope of 0.1524 and an intercept 0.01677, which can be used e.g. to 
interpret evaporation losses for such time series models where no evaporation data are 
available. 
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B.2 Parameters of models for piezometers mentioned in text 
 

 
 

 
 
 

B.3 Graphs of temperature and evaporation model comparison 
with labels 

The following two graphs show comparison of temperature and evaporation models 
(Figure 0.7 and Figure 0.8). These are the same as in Figure 0.4 and Figure 0.6 but with 
the labels of the piezometers mentioned in the text. 
Furthermore, the comparison of the total response and the average response time are 
shown (Figure 0.9 and Figure 0.10).  

name

E_m
odok

E_regim
eok

E_RM
SE E_M0prec E_mu_pr E_fc E_base

T_m
odok

T_regim
eok

T_RM
SE T_M0prec T_mu_pr T_fc T_base

B60B0220001 1 1 8.5 12038 51 1.374 3218 1 1 9.4 10397 24 0.233 3220
B45E0419001 1 1 25.2 59752 363 1.090 865 0 1 25.0 94179 550 0.170 859
B51E0304001 0 1 11.9 18424 354 2.503 1298 1 1 12.7 3373 7 0.854 1285
B57A0067001 1 1 14.5 100233 412 1.412 3649 1 1 15.7 95833 254 0.156 3583
B57A0062002 1 1 17.2 92878 235 0.752 3751 1 1 18.9 52931 140 0.148 3811
B58D2373001 0 1 23.7 400979 1998 3.000 3313 0 1 20.6 461373 2177 0.519 3749

models with Makkink evaporation models with temperature
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Figure 0.7 Factor (fc) relating evaporation or temperature response to precipitation response for 
decent time series models with Makkink evaporation (horizontal axis) compared to models with 
temperature (vertical axis) - both REGIMEOK. 

 

Figure 0.8 Base elevation for decent time series models with Makkink evaporation (horizontal 
axis) compared to models with temperature (vertical axis) - both REGIMEOK. 
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Figure 0.9 Total precipitation response for decent time series models with Makkink 
evaporation (horizontal axis) compared to models with temperature (vertical axis) -
both REGIMEOK. 
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Figure 0.10 Average response time of the precipitation response for decent time 
series models with Makkink evaporation (horizontal axis) compared to models with 
temperature (vertical axis) - both REGIMEOK. 
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APPENDIX C – IMPULSE-RESPONSE FUNCTION MODEL 
ARCHITECTURES 

 

C.1 Model architectures 

The model architectures are identified by four letter abbreviations: 
1. Input: R = single recharge; P = recharge from three principle components; M = 

precipitation and evaporation; 
2. L indicating linear estimation of the impulse; 
3. Time behaviour of impulse response function: C = constant; T = variable; 
4. Use of a noise model: N = none; G = Gaussian process. 

RLCN 

A first set of four models uses a single recharge time series from the process modelling 
database as input, to see how well such an approach would perform. For this purpose, 
we selected meadow on a sand soil, with a water table at 2 m depth. Here, a constant 
(i.e. time-invariant) IRF is used, and no Gaussian process is included. The lumped error 
(model + measurement error) variance is inferred however, leading to the architecture 
illustrated in Figure 0.1. As we only have lumped error values at the dates of the level 
observations, we use linear interpolation to complete the unexplained time series in this 
case. 

 

Figure 0.1 Diagram illustrating the RLCN model architecture. 

RLCG 

This variant of the RLCN architecture introduces a Gaussian process to model the 
unexplained part (model error + anthropogenic effects) of the time series explicitely. The 
parameters required for the Gaussian process are a lengthscale and a variance. The 
squared-exponential kernel was used here, and regularizing priors were defined for the 
lengthscale and variance. For the definition of the Gaussian likelihood, a fixed 
measurement error of 2 cm (standard deviation) was considered here. The resulting 
architecture is displayed in Figure 0.2. 

 

Figure 0.2 Diagram illustrating the RLCG model architecture. 
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RLTN 

This variant of the RLCN architecture introduces time-variance of the IRF, which means 
twelve parameters are added for each of the three IRF parameters, to allow for monthly 
fluctuations. As this does introduce a large number of parameters, the priors for these 
are strongly regularized. This results in the architecture displayed in Figure 0.3. 

 

Figure 0.3 Diagram illustrating the RLTN model architecture. 

RLTG 

This variant of the RLCN architecture combines both the additions in the RLCG and 
RLTN variants, making the IRF time-variant, and including the Gaussian process model. 
The resulting architecture is displayed in Figure 0.4. 

 

Figure 0.4 Diagram illustrating the RLTG model architecture. 

PLCN 

The next set of four models starts from the complete recharge process model database, 
as selecting only a single time series out of the database leaves zero degrees of freedom 
to fit a specific groundwater level observation time series. The number of time series in 
the database is however 357, which is too large to work with in a transparent way. 
Moreover, many of the time series are heavily correlated, when there are only subtle 
differences in land cover, soil type and/or groundwater table depth. To overcome this, 
we resorted to the first three principal components of the full dataset, which explained 
together more than 85% of the variance in the recharge data. We then use a linear 
combination of these three principal components, with prior means for the coefficients 
corresponding to the loadings of the meadow on sand with a groundwater table at 2 m 
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depth case, and additional scaling to infer the mean recharge and its standard deviation 
as well. 
While the prior mode of this approach leads to an approximation of the recharge time 
series used in the RLCN architecture, we do have more degrees of freedom here, which 
allows the model to deviate from it, and basically pick a more relevant recharge time 
series, somehow reflecting the conditions (land cover, soil type, and average 
groundwater table depth) for the groundwater level time series under investigation more 
accurately. In theory, we could take this even further, and make the obtained recharge 
depend on a first transient groundwater level estimate, but this more complex approach 
was considered out of scope for the current exercise (although probably useful for very 
shallow groundwater table depths). The resulting architecture is displayed in Figure 0.5. 

 

Figure 0.5 Diagram illustrating the PLCN model architecture. 

PLCG 

This variant of the PLCN model again add the Gaussian process model for modelling the 
unexplained part explicitly, resulting in the architecture displayed in Figure 0.6. 
 

 

Figure 0.6 Diagram illustrating the PLCG model architecture. 
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PLTN 

This variant of the PLCN model again adds the time-variance of the IRF, resulting in the 
architecture displayed in Figure 0.7. 

 

Figure 0.7 Diagram illustrating the PLTN model architecture. 

PLTG 

This variant of the PLCN model combines the extra elements of both the PLCG and 
PLTN variants, resulting in a time-variant IRF and a Gaussian process model. The 
obtained architecture is displayed in Figure 0.8. 

 

Figure 0.8 Diagram illustrating the PLTG model architecture. 
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MLCN 

The final set of four models uses the more traditional model inputs of precipitation and 
evapotranspiration. The same IRF is used for both time series, which basically means 
we are working with a linear combination of the two. The evapotranspiration factor is 
considered constant in time in this case. The resulting architecture is shown in Figure 
0.9. 

 

Figure 0.9 Diagram illustrating the MLCN model architecture. 

MLCG 

This variant of the MLCN model add the Gaussian process to the model, resulting in the 
architecture displayed in Figure 0.10. This architecture is the one closest to that used by 
Zaadnoordijk et al. (2019), but still there are important differences, mainly with respect 
to the handling of temporal correlation in the residuals. 

 

Figure 0.10 Diagram illustrating the MLCG model architecture. 
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MLTN 

This variant of the MLCN model add the time-variance of the IRF. We consider in this 
case also the evapotranspiration factor to be time-variant, as suggested by Collenteur et 
al. (2021), resulting in again twelve extra, but strongly regularized, parameters. The 
resulting architecture is displayed in Figure 0.11. 

 

Figure 0.11 Diagram illustrating the MLTN model architecture. 

MLTG 

This variant of the MLCN model again combines the additions of both MLCG and MLTN 
variants, resulting in time-variance of the IRF and evapotranspiration factor, as well as a 
Gaussian process model. The resulting architecture is displayed in Figure 0.12. 

 

Figure 0.12 Diagram illustrating the MLTG model architecture. 

 


