

Establishing the European Geological Surveys Research Area to deliver a Geological Service for Europe

Deliverable 6.1a Database of groundwater age indicators and age distributions for vulnerability classification and sustainability assessments

Authors and affiliation:

Klaus Hinsby (GEUS), Lærke Thorling (GEUS), Christian N. Albers (GEUS), Lars Troldborg (GEUS), Maria Ondracek (GEUS), Martin Hansen (GEUS), Viktor S. Rasmussen (GEUS)

This report is part of a project that has received funding by the European Union's Horizon 2020 research and innovation programme under grant agreement number 731166.

Deliverable Data						
Deliverable number	D6.1a					
Dissemination level	Public					
Deliverable name Work package Lead WP/Deliverable beneficiary	Database of groundwater age indicators and age distributions for vulnerability classification and sustainability assessments WP6, GEUS					
Deliverable status						
Submitted (Author(s))	25/10/2021	Klaus Hinsby				
Verified (WP leader)	25/10/2021	Klaus Hinsby				
Approved (Coordinator)	26/10/2021	Laurence Gourcy				

[This page has intentionally been left blank]

DEFINITIONS AND CONCEPTS OF GROUNDWATER AGE, VULNERABILITY (SUSCEPTIBILITY) AND SUSTAINABILITY

Abbreviations and acronyms

GAD = Groundwater age distributions RTD = Residence time distributions TTD = Travel time distributions

On the use of the term "groundwater age"

Some authors recommend to abandon the use of "groundwater age" and "mean groundwater age" as it is misleading in many settings (Troldborg et al. 2008; Suckow 2014). We still believe though that "groundwater age" is a useful term for the general understanding of groundwater aging and travel times along flow paths in the subsurface. By using the term groundwater age distribution we imply that groundwater age and travel times vary in time and space in the subsurface and that groundwater collected from even quite small screens is a mixture of groundwater with different age (or travel time) that may vary between a few years in short shallow screens (< 10 cm) and up to thousands of years or more in wells with long screens (>> 10 m), which e.g. short cuts separate aquifers.

Here we assume groundwater age distributions (GAD) = residence time distributions (RTD) = travel time distributions (TTD) and use the terms as synonyms. The "mean groundwater age" is an "apparent age" potentially covering a wide range of mixed ages, which may be misleading, when assessing the vulnerability of a well or a groundwater body towards pollution etc. Hence, we strongly recommend the use of multiple tracers and models that enables the simulation of age distributions for a specific monitoring or water supply well. Simulation of groundwater age distributions based on measurements of multiple tracers such as ${}^{3}H$, ${}^{39}Ar$ and ${}^{14}C$ and/or well calibrated groundwater flow models preferably calibrated on the contents of dating tracers, gives a much better understanding of the vulnerability of a well or an aquifer towards pollution from the surface than the mean age.

"Vulnerability" or "Susceptibility" of aquifers and water supply wells towards pollution from the surface

In this report we generally use the terms groundwater "vulnerability" "susceptibility" as synonyms defined as "the tendency or likelihood for contaminants to reach a specific position in

the groundwater system" (Solder et al., 2020). Groundwater containing tritium (3 H) or other indicators of modern (post-development) such as industrial gases e.g. CFCs, SF₆ (Hinsby et al., 2001; Jurgens et al., 2016) recharged the aquifers later than approximately 1950 and often contains contaminants such as nitrate and pesticides. Hence such water types are considered at high risk of pollution from the surface and having high vulnerability / susceptibility.

The absence of tritium (³H) and other age indicators like mainly ³⁹Ar or ¹⁴C on the other hand indicate paleowaters older than 10.000 years with no or very little risk of pollution from the surface (low vulnerability). Poorly developed or damaged water supply wells may though always be at risk of pollution from the surface. In addition paleowaters have increased risk of elevated salinity and concentrations of harmful geogenic elements.

Groundwater containing no 3 H but 39 Ar and 14 C have ages with the age range of > 70 and < 10.000 years. This may be considered the "sweet spot" for water supply with little risk of contamination from the surface and limited risk of elevated geogenic elements in most aquifer systems.

Aquifers, well fields and even single water supply wells with long screens may contain all the three water types or age classes mentioned above. In some cases e.g. at supply well or well field scale, a more detailed classification based on estimated groundwater ages is often warranted in order to get a better understanding of the susceptibility of a given water supply well or well field (Broers et al., 2021a, b; Solder

et al., 2020) or the history and fate of observed pollutants in the subsurface (Jakobsen et al., 2020). This will e.g. enable a more detailed ranking of the risk of pollution of water supply wells.

"Vulnerability" of groundwater quantity / sustainable use of groundwater resources

Aquifers / groundwater samples without or low ¹⁴C concentrations (e.g. < 1 pmc - but depends on geochemical reactions in the aquifers) is considered to be paleowaters, older than 10.000 years. These groundwaters recharged during the late Pleistocene typically the last stages of the latest glaciation, and such waters may be considered vulnerable to overexploitation (<u>unsustainable use</u>) as they potentially are recharged at a very low rate. They are furthermore at risk of containing relatively high concentrations of e.g. chloride and geogenic trace elements potentially affecting human health. An old groundwater age of a single well itself, however, is not a good indicator for unsustainability, the distribution of groundwater ages in an aquifer or aquifer system provides a much better indication of the risk of overexploitation and sustainable use of the aquifers (Ferguson et al., 2020).

Groundwater recharged during the Pleistocene (Edmunds et al., 2001; Hinsby et al., 2001a) is basically non-existing in Canada, North America and Northern Europe at the glacial maxima e.g, around the last glacial maximum (LGM) about 18 ka BP (Beyerle et al., 1998, Edmunds and Smedley, 2000). At the LGM thick permafrost covered most parts of Northern Europe and America efficiently hindering groundwater recharge. During ice sheet advances groundwater recharge was most probably highly varying ranging from limited (Edmunds and Smedley, 2000) to an order of magnitude higher than present day recharge (Person et al., 2007). High quality meltwaters from perhaps several glacier advances in the latest glaciation are, however, found and exploited in present day aquifers e.g. in Northern Europe (Pärn et al., 2019, Vaikmae et al., 2021).

Sustainability

'The UN Sustainable Development Goals and the European Green Deal has a very strong focus on sustainability. The current use of water is not sustainable in many places in Europe and globally, and calls for: *"a new framework for analysing and establishing limits to a variety of human modifications of the water cycle"* (Gleeson et al., 2020). This is required to protect society and nature and keep the earth within "Planetary Boundaries" and a "safe operating space for humanity" (Rockström et al., 2009; Steffen et al., 2015).

Hence, in concrete terms, as groundwater is the largest freshwater resource and an important part of the hydrological cycle, groundwater governance and management has to be sustainable protecting both groundwater quantity and quality to ensure sufficient future water resources for water supply, food production and ecosystems. Understanding groundwater age distributions of aquifers and well fields is a prerequisite for protecting the groundwater resources quantity and quality e.g. by enabling assessments of groundwater recharge, transport, history and fate of pollutants, and the sustainability of groundwater abstraction, globally.

TABLE OF CONTENTS

DEFINITIONS AND CONCEPTS OF GROUNDWATER AGE, VULNERABILITY (SUSCEPTIBILITY) AND SUSTAINABILITY
1. INTRODUCTION
 1.1 Background and history of tracer applications for assessment of groundwater age distributions in research and management projects
2. ENVIRONMENTAL TRACER DATA POTENTIALLY INCLUDED IN THE EUROPEAN DATABASE OF AGE INDICATORS
2.1 Environmental tracers used for estimation of groundwater ages in the age range < 1 - > 1 million years14
2.2 Environmental tracer data, metadata and data formats required for upload to EGDI16
3. ENVIRONMENTAL TRACERS IN GROUNDWATER STUDIES - FUTURE PERSPECTIVES AND RECOMMENDATIONS – A GLOBAL OUTLOOK
3.1 Improving access to environmental tracer data for simulation of groundwater age and travel time distributions Erreur ! Signet non défini.
3.2 Environmental tracers, vulnerability / susceptibility and sustainability assessments – options for international collaboration
APPENDIX A - GROUNDWATER AGE AND TRAVEL TIME INFORMATION IN WP6 PARTNER COUNTRIES
APPENDIX B - TABLE OF MOST COMMON ENVIRONMENTAL TRACERS USED FOR ESTIMATION OF GROUNDWATER AGE DISTRIBUTIONS AND CORRECTIONS FOR GEOCHEMICAL REACTIONS .29
APPENDIX C - TABLES OF ENVIRONMENTAL TRACERS, SUPPORTING PARAMETERS AND DERIVED /SIMULATED INFORMATION ON GROUNDWATER AGE DISTRIBUTIONS AND SUSCEPTIBILITY/VULNERABILITY ACCESSIBLE IN DATABASE

1. INTRODUCTION

1.1 Background and history of tracer applications for assessment of groundwater age distributions in research and management projects

Estimation of groundwater age, travel or residence time distributions by environmental tracers and/or models has become an increasingly important tool for study of groundwater flow and transport in aquifers and aquitards since the concept and potential of using tritium (³H) and ¹⁴C for groundwater dating was suggested e.g. by Kaufman and Libby (1954); Eriksson (1958) and Münnich and Vogel (1959). Later, many different environmental tracers have been introduced and applied for groundwater dating in different age intervals (Figure 1, 4 and 5).

Since the introduction of the isotope tracers for estimation of groundwater travel times many studies were conducted at local and short time scales with tracers for dating of young groundwater (Andersen and Sevel, 1974; Hinsby et al., 2001; Broers et al., 2004; Troldborg et al., 2008, Gourcy et al., 2009, Newman et al. 2010; Kivits et al., 2018; Jakobsen et al., 2020) as well as at regional scales with long travel times with tracers for dating of old groundwater e.g. in the East Midlands aquifer (Andrews and Lee, 1979) and the studies in large European basins such as the London Basin (Smith et al., 1976); the Madrid Basin (Llamas et al., 1982), the Great Hungarian Plain (Stute et al. 1992) and the Paris Basin (Marty et al., 1993). European studies furthermore demonstrated that paleowaters more than 10.000 years old with paleoclimate signals are found in many aquifers across Europe (Edmunds et al., 2001, EGDI-HOVER WP6, 2021).

Industrial gases such as CFCs (chlorofluorocarbons) and SF_6 were later introduced for groundwater dating of young groundwater affected by human impacts (Busenberg and Plummer, 1992, 2000; Hinsby et al., 2001; Newman et al., 2010) although these became less applied primarily because of degradation of the CFCs in anoxic aquifers (Hinsby et al., 2007) and for SF₆ due to terrigenic sources or contamination in urban environments (Busenberg and Plummer, 2008).

For this report we focus on primarily the radioactive isotope tracers as these seem to be more robust and widely applied than the industrial gases.

Besides improving our understanding of groundwater travel times and groundwater flow and mixing in the subsurface in different types of aquifers (Eberts et al., 2012), groundwater dating is used for assessment of the advance of modern potentially polluted groundwater and the susceptibility / "vulnerability" of water supply wells towards pollution from the surface (Hinsby et al., 2001, 2008; Broers, 2004; Manning et al., 2005; Eberts et al., 2012; Visser et al., 2013; Jurgens et al., 2016; Kivits et al., 2018), and the assessment of trends and history of specific contaminants such as nitrate (Bohlke and Denver, 1995; Hansen et al. 2012, 2019, Jurgens et al., 2016), pesticides (Visser et al., 2013, Jakobsen et al., 2020) and veterinary pharmaceuticals (Kivits et al., 2018).

Page 5 of 54

Environmental tracers and model simulations may also be used for the estimation of flow in the unsaturated zone and groundwater recharge (Edmunds and Tyler, 2002, Engesgaard et al., 2004; Scanlon et al., 2006).

For the estimation of groundwater ages in short (< 1m) and shallow screens in relatively homogeneous aquifers a mean age or travel time to a specific point using the assumption of piston flow is a reasonable approximation (Plummer et al., 1993) as the age distribution around the mean is rather narrow. For long-screened wells screened or open in potentially several different aquifers or in fractured rocks such an approximation generally does not hold (Broers et al., 2021a,b). In such cases an estimation of the groundwater age distributions either by groundwater flow and transport models or by the use of a range of environmental tracers suited for dating of groundwater of different age is of much more value (Troldborg, 2004; Bethke and Johnson, 2008, Troldborg et al., 2008; Eberts et al., 2012, Jakobsen et al., 2020).

Currently, data on groundwater age indicators cannot normally be obtained from common databases or repositories, but only through papers and reports, and spreadsheets available to a limited number of researchers. Generally national groundwater databases in Europe tore limited information on a few groundwater age indicators primarily tritium (³H), but not the new indicators such as ³⁹Ar and ⁸⁵Kr. As the authors foresee increasing applications and an increasing amount of multiple tracer studies, which will enable more advanced analyses of groundwater age and travel time distributions, we believe it is time to ensure that data on as many environmental tracers as possible are stored in common databases or repositories with easy access for relevant stakeholders.

Common repositories storing the increasing amount of valuable environmental tracer and age indicator data including model simulation of age distributions, are required to ensure easy and FAIR1 data access. This is required to ensure easy combination of data on groundwater age distributions with groundwater quality data e.g. to assess the history and fate of groundwater pollutants (Jakobsen et al., 2020) and to improve our understanding of the groundwater flow systems.

This report initiates and briefly introduces a new European simple database developed within the GeoERA HOVER project that enables the storage of concentrations of all the environmental tracers currently used for groundwater dating and simulation of groundwater age / travel time distributions covering the age range between a few years and up to > 25.000 years. An age range covering the ages of most of the exploited groundwater resources in Europe (see e.g. Fig. 3). Storage of environmental tracers for dating of very old groundwater up to 1 Ma or more is also possible. The relevant data can be uploaded to the European Geological Data Infrastructure (EGDI) in simple tables in the Geopackage format. Access to examples of groundwater age indicators measured in aquifers, monitoring, remediation and water supply wells will be provided via map viewers on EGDI from where data can also be downloaded.

1 Wilkinson M, Dumontier M, Aalbersberg I (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3 (2016). Sci data 3:1–9

Page 6 of 54

1.2 Estimation and visualisation of groundwater age distributions and vulnerability towards pollution from the surface

The groundwater travel time and age distribution in the aquifer systems have significant implication for the advance of modern potentially polluted groundwater (Hinsby et al., 2001), the vulnerability of aquifers towards pollution from the surface (Fig. 1, Manning et al., 2005; Solder et al., 2020) and the risk of over-abstraction (Ferguson et al., 2020) or elevated salinity or concentrations of potentially harmful naturally dissolved elements. Hence, information on and a sound understanding of groundwater flow dynamics and age distributions are of huge importance for sustainable groundwater management in general.

The post-development groundwater system in Fig.1 with groundwater ages less than hundred years that typically contains measurable tritium (³H, Fig. 4 and 5) is at high risk of pollution from the surface, while the deeper pre-development groundwater system, which do not contain tritium and no or very low concentrations of ³⁹Ar, may contain elevated and increasing concentrations with increasing age with positive or negative health impacts depending on the element and the concentration level. The concentration of some of these elements may serve as relative age indicators (Edmunds and Smedley, 2000). The window between these two i.e. with groundwater ages typically within the age range of 100 - 1000 years seem to be an optimal window for groundwater abstraction for water supply. It is, however, very important to note that persistent pollutants advance deeper and deeper into European aquifers (Hinsby et al., 2001), and that it is very important to protect shallow groundwater resources towards pollution from the surface to protect this valuable and renewable resource and ensure continuous exploitation of the resource in a sustainable way.

Figure 1. Simplified conceptual model of the age structure of a regional aquifer, mixing of groundwater of different ages in long-screned wells etc. Tracers highlighted in yellow indicate the most common tracers applied for groundwater age and travel time distributions in different parts of aquifer systems. Modified after Jurgens et al. (2016).

Page 7 of 54

While Figure 1 demonstrate overall and general groundwater age distributions in aquifer systems, Figure 2 demonstrate detailed groundwater age distributions in the bottom and top of a water supply well with a 12 m long screen. Both age distributions simulated based on measured multiple dating tracers (³H/³He, ⁸⁵Kr, ³⁹Ar and ¹⁴C) with TracerLPM (Jurgens et al., 2012, 2016), red curves, and particle tracking (Jakobsen et al., 2020), blue curves indicate that significant parts of the pumped water from the top of the well is younger than / recharged since 1995, while the water pumped from the bottom of the well is all older than 1995. This information has important implications for the assessment of the history and fate of the pesticides observed in the top and bottom of the water supply well (Jakobsen et al., 2020).

Figure 2a. Example of simulated age distributions based on measured tracers (red) and particle tracking with groundwater models (blue) in the top and bottom of a water supply well contaminated with pesticides (Jakobsen et al., 2020). Note that the central part of the screen provide less than 1 % of the inflow to the well.

Page 8 of 54

The benefit of visualizing groundwater age distributions in water supply wells as shown in Figure 2a i.e. as probability density functions of age is that the mean ages of the young and old groundwater fractions are easily observed – i.e. 16 and 80 years, respectively, for the top sample and 39 and 150 years for the bottom sample.

The benefit of visualizing groundwater age distributions as in Figure 2b i.e. as a cumulative distribution function (plot of the cumulative fraction of a sample younger than a given age) is that the fractions of the young and old water types is easily observed. In the top (left) sample in Figure 2b about 33 % of groundwater pumped from the top of screen is less than 20 years old while the rest (about 67 %) is older than 50-55 years old. At the bottom of the screen (right curve in Figure 2b) all groundwater including the young fraction is older than 20 years - 15% is less than about 50 years old, and 85 % is older than about 100 years.

Hence a pesticide found in the top of the well has infiltrated from the surface after the pesticide regulations were introduced in 1995 (about 20 years before the sampling, Figure 2a, Jakobsen et al., 2020). In contrast another pesticide found in the sample pumped from the bottom of the well infiltrated before the pesticide regulations in 1995 (Jakobsen et al., 2020).

Page 9 of 54

Figure 3a, b and c below represent details somewhere between the conceptual model of Figure 1 and the detailed simulations of groundwater age distributions in the top and bottom of a water supply well shown in Figure 2a and 2b. Figure 3a show the location of the pilot study area (The Roer Valley Graben) with many well fields in the Netherlands close to borders with Belgium and Germany, and Figure 3b and c illustrates age distributions of the well fields as grouped in five different age groups in 1) Cross sections through the Roer Valley graben (Figure 3b) and 2) an overview of the defined age classes pumped from the 39 investigated wells fields (Figure 3c).

Figure 3a. Map of the study area in the Netherlands, the Roer Valley Graben, close to borders with Belgium and Germany with location and depth of the sampled well fields (Broers et al., 2021a).

Page 10 of 54

Figure 3b. Groundwater age distributions in groundwater from 39 public water works abstracting water from well fields in aquifers systems of the Roer Valley Graben, The Netherlands (Broers et al., 2021a, b).

Page 11 of 54

Figure 3c. Groundwater age distributions in 39 public water works abstracting water from the Roer Valley Graben aquifer system shown in Figure 3a, The Netherlands (Broers et al., 2021a, b).

For advanced applications, calculation and simulation of groundwater age distributions the tracer databases need to store not only the age indicators themselves, but also supporting tracer information and parameters such as recharge elevation and temperatures. Further, the

Page 12 of 54

estimated age distributions and the information on groundwater vulnerability/susceptibility to be gained from these should be stored and accessible too. Hence, the developed databases should enables the following important information to be stored and accessed for advanced management of wells fields and groundwater systems in general:

1) Groundwater age indicators measured in groundwater monitoring and water supply wells: ${}^{3}H/{}^{3}He$; ${}^{85}Kr$, ${}^{39}Ar$, ${}^{14}C$, CFCs, SF₆, ${}^{4}He$ etc. (Appendix B)

2) Supporting parameters e.g. groundwater recharge temperature and elevation, and parameters used for correcting for the effects of subsurface processes such as excess air and carbonate dissolution, noble gases and $\delta^{13}C$, respectively, etc. (Appendix C)

3) Age distributions computed as e.g. probability density functions and cumulative density functions by lumped parameter models such as TracerLPM enabling assessment of groundwater vulnerability and calculation of a susceptibility index (Solder et al., 2020) and easy plotting and visualisation of the age distributions as e.g. shown in Figure 2a, b and Figure 3 a, b and c. (Broers et al., 2021a, b; Jakobsen et al., 2020, Appendix C).

4) Age distributions computed as probability density functions and cumulative density functions by groundwater flow models (e.g. Troldborg et al., 2008, Eberts et al., 2012) enabling calculation of a susceptibility index and easy plotting and visualisation of the age distributions and mean ages similar to and for comparison with the results calculated in 3) (Jakobsen et al., 2020; Jurgens et al., 2016; Solder et al., 2020)

5) Easy comparison of age distributions obtained by lumped parameter models (3) and groundwater flow models (4) e.g. by common plots of the age distributions obtained by the two methods (Appendix C)

6) Simple indication of the vulnerability / susceptibility of the investigated wells and aquifer system towards pollution from the surface based on the contents of the measured tracers or the fraction of young water and/or the computed susceptibility index as simulated by groundwater flow models. For easy and fast overview on Pan European maps we suggest – three different classes – 1) groundwater < 100 years – high vulnerability / risk of pollution (suggested colour = red) 2) groundwater > 100 – 10.000 yr low vulnerability (suggested colour = green) and 3) very low vulnerability (suggested colour = purple), see deliverable D6.1.b.

Very low vulnerability does not mean that pollution is impossible. Pollution may always occur in poorly developed wells or if the well casings are damaged etc.

The contents of the database incl. parameters, units, derived / computed age distributions, vulnerability/susceptibility to pollution from the surface and standards for data reporting is described in the following.

Page 13 of 54

2. ENVIRONMENTAL TRACER DATA POTENTIALLY INCLUDED IN THE EUROPEAN DATABASE OF AGE INDICATORS

2.1 Environmental tracers used for estimation of groundwater ages in the age range < 1 - > 1 million years

There is a wide range of environmental tracers, which are applied for estimation of groundwater age and travel time distributions at small and large spatially scales or young and old temporal scales. General descriptions of the methods may be found in e.g. Cook and Herczeg (2000) and Kazemi et al. (2006), while research needs on the methods can be found in Newman et al. (2010). The value of understanding groundwater age and travel time distributions in the subsurface both for groundwater research and management is widely accepted and the application of groundwater dating tracers and/or modelling for simulation of groundwater age and travel time distributions are receiving increasing attention across the world (Sprenger et al., 2019).

Recently the application of multiple tracers providing information for different groundwater age intervals, the simulation of the fraction of these and the susceptibility of e.g. water supply wells were demonstrated in several studies (Broers et al., 2021a, b, Hinsby et al., 2021, Jakobsen et al., 2020, Jurgens et al., 2016, Kivits et al., 2018, Solder et al. 2020; Wright et al., 2021).

Figure 4 shows the most common environmental tracers used for estimation of groundwater age or travel time distributions for groundwater recharged to the aquifers less than 10 years to more than 1.000.000 of years ago.

Figure 4. Diagram showing the relative tracer concentrations in groundwater of tracers used for groundwater dating in the different groundwater age intervals (Modified from Massoudieh et al., 2014).

Page 14 of 54

Figure 5 illustrate the tracers used for dating groundwater in different age intervals as well as the analytical methods used for the analysis of the different tracers. The use of different tracers for dating of different age intervals provides additional valuable information e.g. for identification of mixing of different water types with different groundwater age.

Figure 5. Age intervals and methods for the analysis of environmental tracers used for groundwater dating (modified after Suckow, 2014) including example of three age groups: young, old and very old (paleowater) groundwater. These age groups may be easily visualized on regional maps based on groundwater tracer contents e.g. in red, green and purple colours for young, old and very old groundwater.

The new European database for groundwater dating tracers accept concentrations and information on all of the environmental tracers illustrated in Figure 4 and 5 as well as the supporting parameters needed for estimation of groundwater ages such as mean annual recharge temperatures, elevation, noble gases and stable isotopes, time of sampling and analysis etc. (Table 1, Appendix B and C). Note that the indicated age intervals in Figure 5 may be extended for some of the tracers (e.g. ⁴He and ³⁹Ar) – the age range indicate only roughly the potential groundwater dating intervals. The measurements of multiple tracers enable simulation of the mixing of groundwater types with different age and hence groundwater age distributions in the sample (Figure 2 and 3, Jakobsen et al., 2020; Solder et al., 2020; Broers et al. 2021a, b).

Page 15 of 54

2.2 Environmental tracer data, metadata and data formats required for upload to EGDI

Environmental tracers and age indicators such as ³H, ³⁹Ar and ¹⁴C listed in Table 1 can be reported to the EGDI information platform if basic meta data concerning the data have been uploaded to the spatial metadata catalogue "MicKa" beforehand.

Table 1. Example of environmental tracer data for groundwater dating required for upload to simple EGDI tracer database^{1, 7} accessible via map viewers on the European Geological Data Infrastructure (EGDI)

Well ²	X ³	Y ³	Z ⁴	Screen⁵	Screen	Year of	³Н	³ Hunit	³ Herror	³⁹ Ar	³⁹ Arunit	³⁹ Arerror	¹⁴ C	¹⁴ Cunit	¹⁴ Cerror	+T4 ⁶
ID			(masl)	Depth	Length	sampling										
				(m)	(m)											
8.222-	544167	6357128	6	13-15	12	2014	2.98	TU	0.21	98	pmAr	10		pmc		
t																
8.222-	544167	6357128	6	23-25	12	2014	4.42	TU	0.35	80	pmAr	10		pmc		
b																

¹The data has to be provided in the shown units and with decimal points as the decimal separator, preferably in Geopackage format https://www.geopackage.org/ - for other environmental tracers e.g. ⁸⁵Kr, CFCs, SF₆, etc. please use the units provided in the table in appendix B. ²Use your own well ID system,

³You can use your preferred coordinate system, but remember to include information on the system to enable potential conversion, in this case the coordinates are provided in UTM/ETRS89 ZONE 32 coordinates

⁴Elevation in meter above sea level (add – if below)

⁵To top of screen (meter below surface) – if nothing else is indicated it is assumed that the collected sampled is a mixed sample from the whole screen section – in this case we have sampled at the top of the screen (8.222-1) between 13-15 mbs and at the bottom of the screen at 23-25 mbs (8.222-b) ⁶You can add data on other environmental tracers you may have analyses for but please use the notation provided for the tracers in appendix 2 and remember to include relevant metadata in the Micka metadata catalogue.

⁷Relevant metadata e.g. supporting parameters for calculation of groundwater ages (recharge temperatures etc.), sampling techniques, laboratories, project websites, funding and related publications should be uploaded to the MicKa metadata catalogue

Page 16 of 54

3. ENVIRONMENTAL TRACERS IN GROUNDWATER STUDIES - FUTURE PERSPECTIVES AND RECOMMENDATIONS – A GLOBAL OUTLOOK

The number of environmental tracers for investigation of groundwater flow dynamics and groundwater age and travel time distributions and the number of studies applying these are continuously increasing. Hence, there is a strong need for developing international standards for storing the tracers and provide easy and FAIR access (Wilkinson et al., 2016) to groundwater tracer data to facilitate data transfer and international collaboration. Databases should include and enable data upload from groundwater research projects, groundwater monitoring programs and well field investigations of e.g. the vulnerability of water supply wells towards pollution from the surface. Common standards and databases will improve and enable easy communication between groundwater scientists and managers, globally.

In the GeoERA HOVER project we have compiled results and information from more than 20 pilot studies on the application of groundwater dating tracers in groundwater research and management projects across Europe (Szocs et al., 2020), and made selected data and information from these available via the HOVER WP6 map viewer developed for the EGDI information platform in the GeoERA program (EGDI-HOVER-WP6, 2021). The provided information include selected tracer data from some of the investigated pilot areas in order to initiate common efforts and work towards establishing a comprehensive database that include harmonized data on environmental tracers in groundwater, which are used for assessment and simulation of groundwater age and travel time distributions and general assessments of groundwater sustainability and the evolution of the groundwater resources.

Such data and information are very important for protection and sustainable management of European groundwater resources protecting both legitimate uses (e.g. drinking water supply and irrigation) and biodiversity (groundwater dependent or associated terrestrial and aquatic ecosystems) according to the Water Framework Directive and the European Green Deal. They are furthermore important for and support UN policies such as UN sustainable development goals especially SDG6, 11 and 12: Clean water and Sanitation, Sustainable Cities and Communities and Responsible Consumption and Production, and for support of the new UNFC specifications for groundwater (UNECE, 2021) and the new UN Resources Management System, UNRMS (UN, 2021). Finally, the data are very useful in trend assessment, design of monitoring systems, and assessment of lag times i.e. the response time of a certain measures or regulations before positive results appear in monitoring or water supply wells.

We have therefore developed a simple upload procedure for all environmental tracers applied for groundwater dating as e.g. shown in Figure 4 and 5. The data is uploaded to EGDI (http://www.europe-geology.eu/) in the Geopackage file format, https://www.geopackage.org/. The Geopackage file may include metadata either embedded in the Geopackage file itself or in the EGDI metadata catalogue (MicKa) required for data interpretation and groundwater age simulations. Upload of data to EGDI is only possible after upload of metadata on the data to Micka, and data can only be uploaded to EGDI by registered users following specific procedures (EGDI, 2021). If this is not possible for the data providers, the data may be send to the first author of this report, and GEUS will upload the data following

Page 17 of 54

Commenté [KH1]: New reference added at the end of doc

Commenté [KH2]: Maybe you can use these three small sections as a publishable summary?

the required procedures. Examples of applied tracers (³H, ³⁹Ar and ¹⁴C) and selected metadata for the analysed groundwater samples were shown in Table 1 in section two of the report. New tracers appear occasionally, and the EGDI map viewer and repository of analysed environmental tracers therefore accept data and information on all such new tracers if units, metadata and tracer names following international standards are included in the geopackage file. The developed database is not only open to Europe, but data may be provided by countries outside Europe (globally), as long as the data is provided in common standards, and X, Y, Z coordinates are provided for the tracer data in standard coordinate systems. The EGDI is by default using EPSG:3034, which is the preferred coordinate system for Europe, but a world map can be set up in geographical coordinates if required.

The three tracers mentioned above are used for estimation of groundwater ages from within a few years to more than 25.000 years. The tracers may be used as indicators of groundwater susceptibility/vulnerability towards pollution from the surface (³H) or of very old / paleowaters (¹⁴C), which may constitute valuable strategic reserves. Paleowaters may though also be at risk of elevated concentrations of harmful trace elements and/or salinity or overexploitation. Radioactive isotopes with long half-lives of several hundred thousands of years such as ⁸¹Kr and ³⁶Cl may in addition be used to date very old groundwaters in large basins of up to more than a million years. The data provided for the new European environmental tracer database include a few examples of datasets with ⁸¹Kr concentrations or activities.

3.2 Environmental tracers, vulnerability / susceptibility, and sustainability assessments – options for international collaboration

In the current version of the tracer database developed in Geopackage format, and the associated map viewers and metadata catalogue, we have used a very simple groundwater vulnerability indicator based solely on the presence or absence of primarily the three tracers (³H, ³⁹Ar and ¹⁴C). Groundwater containing measurable ³H in groundwater pumped from wells is considered vulnerable to pollution from the surface (red colour on map), groundwater containing measurable ³⁹Ar and/or ¹⁴C > 10 pmc is considered Holocene (< 10.000 years old, green colour on map) and groundwater with < 10 pmc ¹⁴C is considered > 10.000 years old or palaeowater (purple colour on map). Holocene and Pleistocene groundwater have low vulnerability to pollution from the surface.

The groundwater age range between 100 and 10.000 years may be considered the "sweet spot" for groundwater supply as the risk of pollution from the surface or elevated salinity or harmful trace elements is relatively low. It is, however, very important to protect the highly valuable shallow and young groundwater towards pollution from the surface as shallow water supply wells are easier and less costly to develop and exploit. In addition, some contaminants are very persistent and may advance to deep parts of the aquifer systems and hence pollute also deeper aquifers with time (Hinsby et al., 2001)

The vulnerability indicator based on the concentration levels of the tracers described above is very simple, and can be improved with new more detailed simulations of groundwater age and travel time distributions enabling calculation of more precise fractions of young and old water

Page 18 of 54

(Visser et al., 2013, Jurgens et al., 2016, Jakobsen et al., 2020; Broers et al., 2021a, b) and a susceptibility index as e.g. recently developed and proposed by the USGS (Solder et al., 2020).

Hence, we envisage that future versions of the environment tracer database and the associated map viewer and metadata catalogue will be improved by more sophisticated and informative visualizations of groundwater age distributions and vulnerability e.g. as demonstrated in several recent studies (Broers et al., 2021a, b, Jakobsen et al., 2020, Solder et al., 2020). Future versions of the environmental tracer database should enable comparison of groundwater age and travel time distributions estimated by different tools including analytical lumped parameter models for simulating the measured concentrations of the environmental tracers and physically based groundwater flow models (as indicated in Appendix B and C). Finally, future databases should e.g. include calculated susceptibility indices and fractions of different groundwater age ranges calculated by the different tools (Appendix C).

The authors find environmental tracer data of immense value for groundwater research and sustainable management of groundwater resources, globally, especially in combination with groundwater flow models. We would therefore like to encourage the international groundwater research community in collaboration with international organizations such as the International Atomic Energy Agency (IAEA) to develop common global standardized databases and visualization tools for environmental tracers in the subsurface in a common effort similar to what the IAEA and other national and international organisations do for isotopes and gases in precipitation and the atmosphere. This could e.g. be a theme for an IAEA coordinated research program. Work on such a common database should preferably also include tools and indicators / indices for vulnerability / susceptibility and sustainability assessments based on environmental tracer data and groundwater flow models.

Sustainable use of (ground)water and subsurface resources is of increasing importance and it is imperative to comply with and support international policies including the UN Sustainable Development Goals and the European Green Deal etc. The importance of Environmental tracer data for aquifers and groundwater resources management has been recognized for decades and the subject of many international studies, globally, e.g. in IAEA coordinated research programs (IAEA, 2021). Such data will provide strong support to the UNFC specifications for groundwater, which is currently developed (UNECE, 2021) and the new UN Resource Management System (UN, 2021). The value of environmental tracers for sustainable groundwater management cannot be overestimated.

REFERENCES

- Andersen, L. J., and T. Sevel (1974), Six years environmental tritium profiles in the unsaturated and saturated zones, Grønhøj, Denmark, Proceedings Series: Isotope Techniques in Groundwater Hydrology, vol. I, Rep. IAEA- SM-1182/1, p. 3 – 20.
- Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. J Hydrol 41:233–252.

Page 19 of 54

https://doi.org/10.1016/0022-1694(79)90064-7

- Bethke CM, Johnson TM (2008) Groundwater Age and Groundwater Age Dating. Annu Rev Earth Planet Sci 36:121–152. https://doi.org/10.1146/annurev.earth.36.031207.124210
- Bohlke JK, Denver JM (1995) Combined Use of Groundwater Dating , Chemical , and Isotopic Analyses to Resolve the History and Fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour Res 31:2319–2339. https://doi.org/10.1029/95WR01584
- Broers, H. P., Sültenfuß, J., Aeschbach, W., Kersting, A., Menkovich, A., de Weert, J., & Castelijns, J. (2021a). Paleoclimate signals and groundwater age distributions from 39 public water works in the Netherlands; Insights From noble gases and carbon, hydrogen and oxygen isotope tracers. Water Resources Research, 57, e2020WR029058. https://doi.org/10.1029/2020WR029058
- Broers, HP, Hinsby, K., Kivits, T. and Jurgens, B. (2021b). Investigation of age distributions in water supply wells and recommendations for application of tracers and models mainly for estimating groundwater ages between 100 and 1000 years. GeoERA report, HOVER deliverable D6.4.
- Broers HP (2004) The spatial distribution of groundwater age for different geohydrological situations in the Netherlands: Implications for groundwater quality monitoring at the regional scale. J Hydrol 299:84–106. https://doi.org/10.1016/j.jhydrol.2004.04.023
- Busenberg E, Plummer LN (2008) Dating groundwater with trifluoromethyl sulfurpentafluoride (SF 5CF3), sulfur hexafluoride (SF6), CF 3Cl (CFC-13), and CF2Cl2 (CFC-12). Water Resour Res 44:. https://doi.org/10.1029/2007WR006150
- Busenberg E, Plummer LN (2000) Dating young groundwater with sulfur hexafluoride: Natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36:3011–3030. https://doi.org/10.1029/2000WR900151
- Busenberg E, Plummer LN (1992) Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: The alluvium and terrace system of central Oklahoma. Water Resour Res 28:2257–2283. https://doi.org/10.1029/92WR01263
- Eberts SM, Böhlke JK, Kauffman LJ, Jurgens BC (2012) Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination. Hydrogeol J 20:263–282. https://doi.org/10.1007/s10040-011-0810-6
- Edmunds WM, Tyler SW (2002) Unsaturated zones as archives of past climates: Toward a new proxy for continental regions. Hydrogeol J 10:216–228. https://doi.org/10.1007/s10040-001-0180-6

and a second

Page 20 of 54

- Edmunds, W. M., Hinsby, K., Marlin, C., Condesso de Melo, M T, Manzano, M., Vaikmae, R., Travi, Y. Evolution of groundwater systems at the European coastline. In: EDMUNDS, W. M. & MILNE, C. J. (eds). 2001. Palaeowaters in Coastal Europe: evolution of groundwater since the late Pleistocene. Geological Society, London, Special Publications, 189, 289-311.
- EGDI (2021). Procedure for upload of data in the Geopackage format. http://egdipublic.gitlabpages.geus.dk/egdi-documentation/#/maincontent/GeoPackageExamples?id=how-to-link-articles-to-a-spatial-table-with-pilot-areas. Accessed on 25.10.2021.
- EGDI-HOVER-WP6 (2021). Map viewer for groundwater age pilot studies with access to reports and papers . <u>https://data.geus.dk/egdi/?mapname=egdi_geoera_hover#baslay=baseMapGEUS&exten</u> <u>t=17270,1531390,7593370,4692180&layers=ihme1500_aquif,hover_sites</u> – accessed 25.10.2021.
- Eriksson, E. (1958). The possible use of tritium' for estimating groundwater storage. Tellus, 10(4), 472–478. https://doi.org/10.1111/j.2153-3490.1958.tb02035.x
- Ferguson, G., Cuthbert, M. O., Befus, K., Gleeson, T., (2020). Rethinking groundwater age. In Nature Geoscience, Vol. 13, Issue 9, pp. 592–594. Nature Research. https://doi.org/10.1038/s41561-020-0629-7.
- Gourcy L, Baran N, Vittecoq B (2009) Improving the knowledge of pesticide and nitrate transfer processes using age-dating tools (CFC, SF6, 3H) in a volcanic island (Martinique, French West Indies). J Contam Hydrol 108:107–117. https://doi.org/10.1016/j.jconhyd.2009.06.004
- Hansen B, Thorling L, Kim H, Blicher-Mathiesen G (2019) Long-term nitrate response in shallow groundwater to agricultural N regulations in Denmark. J Environ Manage 240:66–74. https://doi.org/10.1016/j.jenvman.2019.03.075
- Hansen B, Dalgaard T, Thorling L, et al (2012) Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence. Biogeosciences 9:3277–3286. https://doi.org/10.5194/bg-9-3277-2012
- Hinsby, K., Purtchert, R., Musy, S., Sültenfuss, J., Aeschbach, W., Jurgens, B., Troldborg, L. et al.? Groundwater age and travel time distributions in 28 short and long-screeened monitoring and water supply wells in Denmark simulated based on multiple tracers, 3H/3He, 85KR, 39Ar, 14C. Hydrol. Earth Syst. Sci., in prep.
- Hinsby K, Purtschert R, Edmunds WM (2008) Chapter 5.3 Groundwater Age and Quality. In: Groundwater Science and Policy: An International Overview. The Royal Society of Chemistry, pp 217–239.

Page 21 of 54

- Hinsby K, Højberg AL, Engesgaard P, et al (2007) Transport and degradation of chlorofluorocarbons (CFCs) in the pyritic Rabis Creek aquifer, Denmark. Water Resour Res 43:. https://doi.org/10.1029/2006WR005854
- Hinsby K, Harrar WG, Nyegaard P, et al (2001a) The Ribe Formation in Western Denmark -Holocene and Pleistocene groundwaters in a coastal Miocene sand aquifer. Geol Soc Spec Publ 189:29–48. https://doi.org/10.1144/GSL.SP.2001.189.01.04
- Hinsby K, Edmunds WM, Loosli HH, et al (2001b) The modern water interface: Recognition, protection and development - Advance of modern waters in European aquifer systems, Geological Society, London, Special Publications 2001; v. 189; p. 271-288, doi:10.1144/GSL.SP.2001.189.01.16
- IAEA (2021a). Closed IAEA CRPs on water, accessed 20-10-2021.
- IAEA (2021b). On-going IAEA CRPs on water, accessed 20-10-2021.
- Jakobsen R, Hinsby K, Aamand J, et al (2019) History and Sources of Co-Occurring Pesticides in an Abstraction Well Unraveled by Age Distributions of Depth-Specific Groundwater Samples. Environ Sci Technol. https://doi.org/10.1021/acs.est.9b03996
- Jurgens BC, Böhlke JK, Kauffman LJ, et al (2016) A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells. J Hydrol 543:109–126. https://doi.org/10.1016/j.jhydrol.2016.05.011
- Kaufman S, Libby WF (1954) The natural distribution of tritium. Phys Rev 93:1337–1344. https://doi.org/10.1103/PhysRev.93.1337
- Kivits T, Broers HP, Beeltje H, et al (2018) Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environ Pollut 241:988–998. https://doi.org/10.1016/j.envpol.2018.05.085
- Lemieux JM, Sudicky EA, Peltier WR, Tarasov L (2008) Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. J Geophys Res Earth Surf 113:. https://doi.org/10.1029/2007JF000838
- Llamas, M.R., Simpson, E.S. and Alfaro, P.E.M. (1982), Ground-Water Age Distribution in Madrid Basin, Spain. Groundwater, 20: 688-695. https://doiorg.ep.fjernadgang.kb.dk/10.1111/j.1745-6584.1982.tb01388.x
- Marty B, Torgersen T, Meynier V, et al (1993) Helium isotope fluxes and groundwater ages in the Dogger Aquifer, Paris Basin. Water Resour Res 29:1025–1035. https://doi.org/10.1029/93WR00007

Manning AH, Solomon DK, Thiros SA (2005) 3H/3He age data in assessing the susceptibility of

Page 22 of 54

wells to contamination. Ground Water 43:353–367. https://doi.org/10.1111/j.1745-6584.2005.0028.x

- Massoudieh A, Visser A, Sharifi S, Broers HP (2014) A Bayesian modeling approach for estimation of a shape-free groundwater age distribution using multiple tracers. Appl Geochemistry 50:252–264. https://doi.org/10.1016/j.apgeochem.2013.10.004
- McIntosh JC, Walter LM (2006) Paleowaters in Silurian-Devonian carbonate aquifers: Geochemical evolution of groundwater in the Great Lakes region since the Late Pleistocene. Geochim Cosmochim Acta 70:. https://doi.org/10.1016/j.gca.2006.02.002
- Münnich, KO and Vogel JC, (1959) C14-Altersbestimmung von Süßwasser. Naturwissenschaften, 46, 168-169.
- Newman BD, Osenbrück K, Aeschbach-Hertig W, et al (2010) Dating of "young" groundwaters using environmental tracers: Advantages, applications, and research needs. Isotopes Environ Health Stud 46:259–278. https://doi.org/10.1080/10256016.2010.514339
- Pärn J, Walraevens K, van Camp M, et al (2019) Dating of glacial palaeogroundwater in the Ordovician-Cambrian aquifer system, northern Baltic Artesian Basin. Appl Geochemistry 102:64–76. https://doi.org/10.1016/j.apgeochem.2019.01.004.
- Person M, McIntosh J, Bense V, Remenda VH (2007) Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems. Rev Geophys 45:. https://doi.org/10.1029/2006RG000206
- Rockström, J., Steffen, W., Noone, K. et al. (2009) A safe operating space for humanity. Nature 461, 472–475
- Scanlon BR, Keese KE, Flint AL, et al (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:. https://doi.org/10.1002/hyp.6335
- Smith DB, Downing RA, Monkhouse RA, et al (1976) The age of groundwater in the chalk of the London Basin. Water Resour Res 12:392–404. https://doi.org/10.1029/WR012i003p00392
- Solder JE, Jurgens B, Stackelberg PE, Shope CL (2020) Environmental tracer evidence for connection between shallow and bedrock aquifers and high intrinsic susceptibility to contamination of the conterminous U.S. glacial aquifer. J Hydrol 583:. https://doi.org/10.1016/j.jhydrol.2019.124505
- Steffen W, Richardson K, Rockström J, et al (2015) Planetary boundaries: Guiding human development on a changing planet. 347, 1259855, DOI: 10.1126/science.1259855
- Suckow A (2014) The age of groundwater Definitions, models and why we do not need this term. Appl Geochemistry 50:222–230. https://doi.org/10.1016/j.apgeochem.2014.04.016

Page 23 of 54

- Sonnenborg TO, Scharling PB, Hinsby K, et al (2016) Aquifer Vulnerability Assessment Based on Sequence Stratigraphic and 39Ar Transport Modeling. Groundwater 54:214–230. https://doi.org/10.1111/gwat.12345
- Starn JJ, Kauffman LJ, Carlson CS, et al (2021) Three-Dimensional Distribution of Groundwater Residence Time Metrics in the Glaciated United States Using Metamodels Trained on General Numerical Simulation Models. Water Resour Res 57:. https://doi.org/10.1029/2020WR027335
- Stute M, Deak J (1990) Environmental isotope study (14C, 13C, 18O, D, noble gases) on deep groundwater circulation systems in Hungary with reference to paleoclimate. Radiocarbon 31:902–918. https://doi.org/10.1017/s0033822200012522
- Stute M, Sonntag C, Deák J, Schlosser P (1992) Helium in deep circulating groundwater in the Great Hungarian Plain: Flow dynamics and crustal and mantle helium fluxes. Geochim Cosmochim Acta 56:2051–2067. https://doi.org/10.1016/0016-7037(92)90329-H
- Szocs, T., HInsby, K., Gourcy, L., Henriot, A., Broers, HP ()2020). Collection of use cases including good practice guidance and age indicator sampling guide. HOVER report, deliverable D6.2. Available via map viewer of pilot areas: https://data.geus.dk/egdi/?mapname=egdi_geoera_hover#baslay=baseMapGEUS&exten t=17270,1531390,7593370,4692180&layers=ihme1500_aquif,hover_sites, accessed 25.10.2021.
- Troldborg L, Jensen KH, Engesgaard P, et al (2008) Using Environmental Tracers in Modeling Flow in a Complex Shallow Aquifer System. J Hydrol Eng 13:1037–1048

UN (2021). United Nations Resource Management System - An Overview of Concepts, Objectives and Requirements. UN report, 64 pp., <u>https://shop.un.org/books/un-resource-management-system-92465</u>, accessed 27.10.2021.

- UNECE (2021). Draft UNFC supplemental specifications for groundwater. https://unece.org/sed/documents/2021/02/working-documents/draft-unfcsupplemental-specifications-groundwater, accessed 20-10-2021.
- Vaikmäe R, Pärn J, Raidla V, et al (2021) Late pleistocene and holocene groundwater flow history in the baltic artesian basin: A synthesis of numerical models and hydrogeochemical data. Est J Earth Sci 70:. https://doi.org/10.3176/earth.2021.11
- Visser A, Broers HP, Purtschert R, et al (2013) Groundwater age distributions at a public drinking water supply well field derived from multiple age tracers (85Kr, 3H/ 3He, and 39Ar). Water Resour Res 49:7778–7796. https://doi.org/10.1002/2013WR014012

Wilkinson M, Dumontier M, Aalbersberg I (2016) The FAIR Guiding Principles for scientific data

Commenté [KH3]: Important reference to put the whole thing in a larger context

Page 24 of 54

management and stewardship. Sci. Data 3 (2016). Sci data 3:1-9

APPENDIX A - GROUNDWATER AGE AND TRAVEL TIME INFORMATION IN WP6 PARTNER COUNTRIES

The questionnaire to the 14 HOVER WP6 partner countries (Austria, Cyprus, Croatia, Denmark, Estonia, France, Hungary, Malta, The Netherlands, Romania, Slovenia, Spain, Sweden and Ukraine) on the availability of measurements of groundwater age indicators and groundwater age distributions simulated by groundwater models, revealed that there are currently limited multiple tracer data available for European groundwater monitoring and water supply wells, and hence for a European tracer and groundwater age database (see below). However, there are use cases from most European countries applying one or two environmental tracers for groundwater dating, 23 of these were described in the HOVER deliverable D6.2 (Szocs et al., 2020). Link to use cases and pilot areas providing information and data on groundwater age distributions compiled in HOVER: <u>Groundwater age study sites</u>. The number of studies applying multiple tracers for simulation of groundwater age distribution in water supply and monitoring wells similar to studies by Visser et al. (2013), Kivits et al. (2018), Jakobsen et al. (2020), Broers et al. (2021a, b) and Hinsby et al. (2021) are anticipated to grow in the future.

Page 26 of 54

APPENDIX A - TABLE OF GROUNDWATER AGE AND TRAVEL TIME INFORMATION IN EUROPE AVAILABLE FROM THE 15 HOVER WP6 PARTNERS ACCORDING TO A QUESTIONNAIRE CONDUCTED IN THE PROJECT.

Type of groundwater age information	Partners with available information from their country*	Comments
1. Tracer age distributions in aquifers corroborated by groundwater flow models or vice versa	BRGM (FR), CGS (CZ), GEUS (DK), MBFSZ (HU), HGI-CGS (HR), MTI (MT),	Other HOVER partners with such data: BGR (DE), BGS (UK), TNO (NL)
2. Groundwater flow models calibrated by groundwater age indicators	BRGM (FR), GEUS (DK), MBFSZ (HU)	
3. Calibrated groundwater flow models, which are able to simulate groundwater age distributions, but no groundwater age indicators / tracers to corroborate these ?	BRGM (FR), GEUS (DK), HGI- CGS (HR), MBFSZ (HU), VMM (BE)	
4. Monitoring wells with short screens (< 1m) with time series of pollutants and tracer estimated age distributions or mean travel times ?	GEUS(DK)	
5. time series for pollutants in water supply or monitoring wells with long screens, which have been age dated	BRGM (FR), GEUS (DK), EGT (EE), HGI-CGS (HR)	
6. water supply or monitoring wells with long screens where the groundwater age distribution have been estimated based on multiple tracers / groundwater age indicators ?	BRGM (FR), GEUS (DK), HGI- CGS (HR), MBFSZ (HU)	Other HOVER partners with such data: DE, NL & UK
7. water supply or monitoring wells with long screens for which groundwater age distributions have been estimated both by the application of multiple tracers and groundwater models ?	BRGM (FR), GEUS (DK), EGT (EE), HGI-CGS (HR), MBFSZ (HU)	
8. Do you have long screen wells, which clearly demonstrate bi- or even multimodal groundwater age distributions ?	GEUS(DK)	TNO (NL)
9. Have you identified Paleowaters (> 10.000 yrs) by tracers in any of your aquifers e.g. by age or recharge	BRGM(FR), GBA (AT), GEUS (DK), GSE (EE), IGR (RO), LGT (LT)	Please consult the groundwater map developed in

Page 27 of 54

temperature (stable isotopes, heavy noble gases) indicators ?		RESOURCE WP6 for distribution of paleowaters in Europe. Other HOVER partner countires with such data include DE, NL and UK
10. Have you any water supply or other wells, which have been dated with combined use of 3H/3He, 85Kr and 39Ar ?	BRGM (FR), GSD (CY), GEUS (DK), EGT (EE), IGR (RO), SGU (SE)	
11. Are you using any kind of groundwater age grouping / classification such as "young, old, paleowaters" and in that case how are they defined ?	BRGM (FR), GSD (CY), GBA (AT), (GEUS (DK), (MBFSZ(HU)), (HGI-CGS (HR))	Approach vary between countries
12. Does pilot sites with existing groundwater age data or plans for groundwater age dating campaigns, which would be relevant for studies of groundwater age distributions in your country or in cross-border settings in HOVER WP6 exist? if so please name the suggested pilot sites	BRGM (FR), GEUS (DK) EGT (EE), SGU (SE)	Other HOVER partners with such plans: NL

*The table is not exhaustive but indicate the type of data and information available in each country.

APPENDIX B - TABLE OF MOST COMMON ENVIRONMENTAL TRACERS USED FOR ESTIMATION OF GROUNDWATER AGE DISTRIBUTIONS AND CORRECTIONS FOR GEOCHEMICAL REACTIONS

Tracer – isotopes and industrial gases (listed by increasing atomic / molecule	Unit	Stable or radioactive isotope	Half life	Applications of tracers
weight)		a		
Delta deute- rium	‱	Stable		Delta 2H may indicate lower recharge 1 and e.g. paleowaters
H-3 ¹	TU	Radio- active	12.3	Measurable 3H indicate risk of pollution
He-3	Nml/Kg	Stable		For 3H/3He dating
Tritiogenic He-3	TU	Stable		For 3H/3He dating
He-4	Nml/Kg	stable		Sometimes used for relative or even absolute age dating if underground production can be estimated
Delta C-13	‰	stable		Used for correction of carbonate dissolution in 14C dating
C-14*	pmc	Radio- active	5730	Low 14C contents e.g. < 10 pmc (percent modern Carbon) indicate paleowater > 10.000 yr
delta O-18	‰	Stable		May indicate lower recharge T and e.g. paleowaters
Ar-37	mBq/ m³air	Radio- active	0.0958	Support 39Ar interpretation
Ar-39*	pmAr	Radio- active	269	No or very low 39Ar indicate gw age > 1500 yr
Kr-81	pmKr	Radio- active	229000	81Kr is used for dating very old water/ice. Measured in percent of modern krypton. https://doi.org/10.1016/j.earscirev.2013.09.002
Kr-85*	dpm/cc	Radio- active	10.76	85Kr is used for dating of young groundwater (fraction)
CFC-12	ng/L	N/A	0	CFC-12 is used for dating of young groundwater (fraction)

Page 29 of 54

CFC-11	ng/L	N/A	0	CFC-11 is used for dating of young groundwater (fraction)
CFC-113	ng/L	N/A	0	CFC-113 is used for dating of young groundwater (fraction)
SF6	fmol/l	N/A	0	Sulfur Hexafluoride is used for dating of young groundwater (fraction)
SF5CF3	fmol/l	N/A	0	Trifluoromethyl sulfur pentafluoride is used for dating of young groundwater (fraction)

¹ Highlighted radioactive isotopes that may also be named: 3H, 39Ar, 14C are the most important isotope tracers for estimation of groundwater age distributions within the age range of 1 - > 10.000 years. These tracers are of special interest for the assessment of the vulnerability of water supply wells towards pollution from the surface and assessment of the history and fate of contaminants in the subsurface. The industrial gases (CFCs and SF₆) may also be used for groundwater dating depending on the hydrogeological setting. Other tracers are helpful supporting parameters that may occasionally be applied for groundwater dating (4He) or indication of low recharge temperatures (delta O-18) or the heavy noble gases **. NOTE! Other environmental tracers than we list here may be uploaded as long as standard units and preferably analytical errors are provided**

Page 30 of 54

APPENDIX C - TABLES OF ENVIRONMENTAL TRACERS, SUPPORTING PARAMETERS AND DERIVED /SIMULATED INFORMATION ON GROUNDWATER AGE DISTRIBUTIONS AND SUSCEPTIBILITY/VULNERABILITY ACCESSIBLE IN DATABASE

 Table 1. Meta data and information to be stored with the age indicators and supporting parameters in table 2 and 3.

Sam ple ID	Sam ple no.	W ell ID	INTA KE ID	Sampl ing date	Date of analy sis	Sampl ing Temp	Estima ted rechar ge temp.	Elevat ion	Sample coordin ates	Sam ple dept h	US ER ID

Table	2.	Main	groundwater	age	indicators	/	environmental	tracers	used	for	estimating
groun	dwa	ater ag	e and travel tir	ne di	stributions						

Tracer	Environmental	Conc.	error	Analysis	Sample ID
ID	Tracer (from	/activity		method	(from table1)
	appendix B				
	eg Kr-85				

Page 31 of 54

Table 3. Simulated age distributions expressed as probability density functions (PDF), cumulative density functions (CDF) and derived parameters. The distributions may be computed e.g. by TracerLPM (TLPM), the DK-model or potentially other models derived parameters and susceptibility/vulnerability

Simulat ion ID	Model Type (from Model id table)	PD F ID	CD F	PD F plo t ⁴	CD F plo t ⁴	Mean or media n? age ⁴	Fractio n of young water (rechar ged after 1950) ⁴	Susceptib ility Index ¹ (SI) ⁴	Simple Vulnerab ility class ^{2, 4}	SI- TLP M / SI- DK- mod el ^{3, 4}
	eg. TracerL PM									
	Eg. DK- model									
	Other									

 1 Solder et al. (2020), 2 E.g. 1 = vulnerable, 2=slightly vulnerable and 3= not vulnerable; 3 The ratio indicate the agreement between the two age distributions as simulated by TracerLPM / the DK-model. 4 Plottet on the fly

Table 4. Supporting simulation parameters needed for plotting of age distributions and TracerLPM simulations.

Simulation	Parameter	result
ID		
Eg DKM01	AP005	25.35
Eg.TrLPM01	LPM01	5.0

Table 5. Supporting parameters needed for model identification (might need more columns for general purpose, not only related to age simulation)

Model	Model	Model	Model	Model	Model	Model	User	Note
ID	Name	area	purpose	Туре	Owner	Date	ID	
				Eg. DK- model				
				TracerLPM				

Page 32 of 54

Table 6. Supporting parameters needed for simulation identification (might need more columns for general purpose, not only related to age simulation).

i					,			
Simulation	Model	Study	Simulation	Туре	Report	Simulation	User	Note
ID	ID	area	purpose		ID	Date	ID	
				e.g.				
				particle				
				tracking				
				LPM				

Table 7. Supporting model parameters. AP001-AP100 are necessary parameters for production of CDF and PDF. The rest of the parameters are optional, but necessary if we want to facilitate and supportTracerLPM simulations

Paramete r	PARM_NAM E	SHORT_NAME	GROUP	NOT E	UNIT
AP001	Transport time for 1% percentile (>= 1% is younger than this age)	Age_percentile_001	Simulated age percentiles		YEAR
AP002	Transport time for 2% percentile (>= 2% is younger than this age)	Age_percentile_002	Simulated age percentiles		YEAR
 AP099	Transport time for 99% percentile (>= 99% is younger than this age)	Age_percentile_99	Simulated age percentiles		YEAR

Page 33 of 54

AP100	Transport time for 100% percentile (>= 100% is younger than this age)	Age_percentile_100	Simulated age percentiles		YEAR
LPM01	UZ travel time	LPM_I_UZtt	Initial Model Values	5	YEAR
LPM02	Mean age	LPM_I_Age_C1	Initial Model Values	6	YEAR
LPM03	Model Parameter 1	LPM_I_ModParm1_C1	Initial Model Values	7	
LPM04	Model Parameter 2	LPM_I_ModParm2_C1	Initial Model Values	8	
LPM05	Fraction	LPM_I_Fraction_C1	Initial Model Values	9	
LPM06	2nd Mean age, years	LPM_I_Age_C2	Initial Model Values	10	
LPM07	2nd Model Parameter 1	LPM_I_ModParm1_C2	Initial Model Values	11	
LPM08	2nd Model Parameter 2	LPM_I_ModParm2_C2	Initial Model Values	12	
LPM09	Optimizatio n Type	LPM_TypeOfOpt	Lumped Parameter Modeling Results	13	

LPM10	LPM name	LPM_Name	Lumped Parameter Modeling Results	14	
LPM11	Free Model Parameters	LPM_Parms	Lumped Parameter Modeling Results	15	
LPM12	Chi-Square (sum of weighted squared residuals)	LPM_ChiSqr	Lumped Parameter Modeling Results	16	
LPM13	Chi-Square Probability	LPM_Prob	Lumped Parameter Modeling Results	17	
LPM14	UZ travel time, years	LPM_UZtt_yrs	Lumped Parameter Modeling Results	18	
LPM15	UZ travel time error, years	LPM_UZtt_Err_yrs	Lumped Parameter Modeling Results	19	
LPM16	Mean age, years	LPM_Age_C1_yrs	Lumped Parameter Modeling Results	20	
LPM17	Mean age error, years	LPM_Age_Err_C1_yrs	Lumped Parameter Modeling Results	21	

Page 35 of 54

LPM18	Model Parameter 1	LPM_ModParm1_C1	Lumped Parameter Modeling Results	22	
LPM19	Model Parameter 1 error	LPM_ModParm1_C1_Err	Lumped Parameter Modeling Results	23	
LPM20	Model Parameter 2	LPM_ModParm2_C1	Lumped Parameter Modeling Results	24	
LPM21	Model Parameter 2 error	LPM_ModParm2_C1_Err	Lumped Parameter Modeling Results	25	
LPM22	Fraction	LPM_Fraction_C1	Lumped Parameter Modeling Results	26	
LPM23	Fraction error	LPM_Fraction_C1_Err	Lumped Parameter Modeling Results	27	
LPM24	Mean age (component 2), years	LPM_Age_C2	Lumped Parameter Modeling Results	28	
LPM25	Mean age error (component 2), years	LPM_Age_C2_Err	Lumped Parameter Modeling Results	29	

Page 36 of 54

LPM26	Model Parameter 1 (component 2)	LPM_ModParm1_C2	Lumped Parameter Modeling Results	30	
LPM27	Model Parameter 1 error (component 2)	LPM_ModParm1_C2_Err	Lumped Parameter Modeling Results	31	
LPM28	Model Parameter 2 (component 2)	LPM_ModParm2_C2	Lumped Parameter Modeling Results	32	
LPM29	Model Parameter 2 error (component 2)	LPM_ModParm2_C2_Err	Lumped Parameter Modeling Results	33	
LPM30	Tracers Modeled	LPM_TracersMod	Lumped Parameter Modeling Results	34	
LPM31	HiTracer	LPM_HiTracer	Lumped Parameter Modeling Results	35	
LPM32	Hi Tracer Chi-Sqr	LPM_HiTracerChiSqr	Lumped Parameter Modeling Results	36	
LPM33	Number of iterations	LPM_NumOfIters	Lumped Parameter Modeling Results	37	

Page 37 of 54

LPM34	Model solution time, seconds	LPM_ModSolnTime	Lumped Parameter Modeling Results	38	
LPM35	Model date stamp	LPM_ModelDate	Lumped Parameter Modeling Results	39	
LPM40	Tracer 1, model conc.	LPM_Mod_Tracer_01	Lumped Parameter Model Concentratio ns	40	
LPM41	Tracer 2, model conc.	LPM_Mod_Tracer_02	Lumped Parameter Model Concentratio ns	41	
LPM42	Tracer 3, model conc.	LPM_Mod_Tracer_03	Lumped Parameter Model Concentratio ns	42	
LPM43	Tracer 4, model conc.	LPM_Mod_Tracer_04	Lumped Parameter Model Concentratio ns	43	
LPM44	Tracer 5, model conc.	LPM_Mod_Tracer_05	Lumped Parameter Model Concentratio ns	44	
LPM45	Tracer 6, model conc.	LPM_Mod_Tracer_06	Lumped Parameter Model Concentratio ns	45	

Page 38 of 54

LPM46	Tracer 7, model conc.	LPM_Mod_Tracer_07	Lumped Parameter Model Concentratio ns	46	
LPM47	Tracer 8, model conc.	LPM_Mod_Tracer_08	Lumped Parameter Model Concentratio ns	47	
LPM48	Tracer 9, model conc.	LPM_Mod_Tracer_09	Lumped Parameter Model Concentratio ns	48	
LPM49	Tracer 10, model conc.	LPM_Mod_Tracer_10	Lumped Parameter Model Concentratio ns	49	
LPM50	Comments	Comments	Reported Results	180	
LPM51	Total mean age	TotAge_yrs	Reported Results	156	YEAR
LPM52	Total mean age error	TotAge_Err_yrs	Reported Results	157	YEAR
LPM53	Reported Total mean age	Rpt_TotAge_yrs	Reported Results	158	YEAR
LPM54	Reported Total mean age error	Rept_TotAge_Err_yrs	Reported Results	159	YEAR
LPM55	Reported fraction modern	Rpt_FracModern	Reported Results	160	
LPM56	Reported Susceptibilit y index	Rpt_SuscIndex	Reported Results	161	
LPM57	Reported Chi-Square	Rpt_ChiSquare	Reported Results	162	

Page 39 of 54

1				1	1
LPM58	Reported Probability	Rpt_Probability	Reported Results	163	
LPM59	Reported UZ travel time	Rpt_UZtt_yrs	Reported Results	164	YEAR
LPM60	Reported UZ travel time error	Rpt_UZtt_Err_yrs	Reported Results	165	YEAR
LPM61	Reported Mean age	Rpt_Age_C1_yrs	Reported Results	166	YEAR
LPM62	Reported Mean age error	Rpt_Age_Err_C1_yrs	Reported Results	167	YEAR
LPM63	Reported Model Parameter 1	Rpt_ModParm1_C1	Reported Results	168	
LPM64	Reported Model Parameter 1 error	Rpt_ModParm1_C1_Err	Reported Results	169	
LPM65	Reported Model Parameter 2	Rpt_ModParm2_C1	Reported Results	170	
LPM66	Reported Model Parameter 2 error	Rpt_ModParm2_C1_Err	Reported Results	171	
LPM67	Reported Fraction	Rpt_Fraction_C1	Reported Results	172	
LPM68	Reported Fraction error	Rpt_Fraction_C1_Err	Reported Results	173	
LPM69	Reported Mean age (component 2)	Rpt_Age_C2	Reported Results	174	YEAR
LPM70	Reported Mean age error (component 2)	Rpt_Age_C2_Err	Reported Results	175	YEAR
LPM71	Reported Model Parameter 1	Rpt_ModParm1_C2	Reported Results	176	

Page 40 of 54

	(component 2)				
LPM72	Reported Model Parameter 1 error (component 2)	Rpt_ModParm1_C2_Err	Reported Results	177	
LPM73	Reported Model Parameter 2 (component 2)	Rpt_ModParm2_C2	Reported Results	178	
LPM74	Reported Model Parameter 2 error (component 2)	Rpt_ModParm2_C2_Err	Reported Results	179	
MCS01	Num. of Monte Carlo sims	LPM_MC_NumOfSims	Monte Carlo Results	70	
MCS02	Simulation time, seconds	LPM_MC_ModSimTime	Monte Carlo Results	71	
MCS03	UZ travel time	LPM_MC_UZtt_yrs	Monte Carlo Results	72	YEAR
MCS04	UZ travel time error	LPM_MC_UZtt_Err_yrs	Monte Carlo Results	73	YEAR
MCS05	Mean age	LPM_MC_Age_C1_yrs	Monte Carlo Results	74	YEAR
MCS06	Mean age error	LPM_MC_Age_Err_C1_yrs	Monte Carlo Results	75	YEAR
MCS07	Model Parameter 1	LPM_MC_ModParm1_C1	Monte Carlo Results	76	

Page 41 of 54

MCS08	Model Parameter 1 error	LPM_MC_ModParm1_C1_ Err	Monte Carlo Results	77	
MCS09	Model Parameter 2	LPM_MC_ModParm2_C1	Monte Carlo Results	78	
MCS10	Model Parameter 2 error	LPM_MC_ModParm2_C1_ Err	Monte Carlo Results	79	
MCS11	Fraction	LPM_MC_Fraction_C1	Monte Carlo Results	80	
MCS12	Fraction error	LPM_MC_Fraction_C1_Err	Monte Carlo Results	81	
MCS13	Mean age (component 2)	LPM_MC_Age_C2	Monte Carlo Results	82	YEAR
MCS14	Mean age error (component 2)	LPM_MC_Age_C2_Err	Monte Carlo Results	83	YEAR
MCS15	Model Parameter 1 (component 2)	LPM_MC_ModParm1_C2	Monte Carlo Results	84	
MCS16	Model Parameter 1 error (component 2)	LPM_MC_ModParm1_C2_ Err	Monte Carlo Results	85	
MCS17	Model Parameter 2 (component 2)	LPM_MC_ModParm2_C2	Monte Carlo Results	86	
MCS18	Model Parameter 2 error (component 2)	LPM_MC_ModParm2_C2_ Err	Monte Carlo Results	87	

Page 42 of 54

MCS19	Tracer 1, empty	LPM_MC_Sim_Tracer_01	Monte Carlo Tracer Results	88
MCS20	Tracer 1, std. err.	LPM_MC_Sim_Tracer_01_ Err	Monte Carlo Tracer Results	89
MCS21	Tracer 2, empty	LPM_MC_Sim_Tracer_02	Monte Carlo Tracer Results	90
MCS22	Tracer 2, std. err.	LPM_MC_Sim_Tracer_02_ Err	Monte Carlo Tracer Results	91
MCS23	Tracer 3, empty	LPM_MC_Sim_Tracer_03	Monte Carlo Tracer Results	92
MCS24	Tracer 3, std. err.	LPM_MC_Sim_Tracer_03_ Err	Monte Carlo Tracer Results	93
MCS25	Tracer 4, empty	LPM_MC_Sim_Tracer_04	Monte Carlo Tracer Results	94
MCS26	Tracer 4, std. err.	LPM_MC_Sim_Tracer_04_ Err	Monte Carlo Tracer Results	95
MCS27	Tracer 5, empty	LPM_MC_Sim_Tracer_05	Monte Carlo Tracer Results	96
MCS28	Tracer 5, std. err.	LPM_MC_Sim_Tracer_05_ Err	Monte Carlo Tracer Results	97

Page 43 of 54

MCS29	Tracer 6, empty	LPM_MC_Sim_Tracer_06	Monte Carlo Tracer Results	98
MCS30	Tracer 6, std. err.	LPM_MC_Sim_Tracer_06_ Err	Monte Carlo Tracer Results	99
MCS31	Tracer 7, empty	LPM_MC_Sim_Tracer_07	Monte Carlo Tracer Results	100
MCS32	Tracer 7, std. err.	LPM_MC_Sim_Tracer_07_ Err	Monte Carlo Tracer Results	101
MCS33	Tracer 8, empty	LPM_MC_Sim_Tracer_08	Monte Carlo Tracer Results	102
MCS34	Tracer 8, std. err.	LPM_MC_Sim_Tracer_08_ Err	Monte Carlo Tracer Results	103
MCS35	Tracer 9, empty	LPM_MC_Sim_Tracer_09	Monte Carlo Tracer Results	104
MCS36	Tracer 9, std. err.	LPM_MC_Sim_Tracer_09_ Err	Monte Carlo Tracer Results	105
MCS37	Tracer 10, empty	LPM_MC_Sim_Tracer_10	Monte Carlo Tracer Results	106
MCS38	Tracer 10, std. err.	LPM_MC_Sim_Tracer_10_ Err	Monte Carlo Tracer Results	107

Page 44 of 54

TIV01	Tracer Name 1	LPM_Tracer_Name_01	Tracer Input Variables	108
TIV02	Tracer Name 2	LPM_Tracer_Name_02	Tracer Input Variables	109
TIV03	Tracer Name 3	LPM_Tracer_Name_03	Tracer Input Variables	110
TIV04	Tracer Name 4	LPM_Tracer_Name_04	Tracer Input Variables	111
TIV05	Tracer Name 5	LPM_Tracer_Name_05	Tracer Input Variables	112
TIV06	Tracer Name 6	LPM_Tracer_Name_06	Tracer Input Variables	113
TIV07	Tracer Name 7	LPM_Tracer_Name_07	Tracer Input Variables	114
TIV08	Tracer Name 8	LPM_Tracer_Name_09	Tracer Input Variables	115
TIV09	Tracer Name 9	LPM_Tracer_Name_09	Tracer Input Variables	116
TIV10	Tracer Name 10	LPM_Tracer_Name_10	Tracer Input Variables	117

Page 45 of 54

TIV11	Tracer Input Source 1	LPM_TracerInput_01	Tracer Input Variables	118
TIV12	Tracer Input Source 2	LPM_TracerInput_02	Tracer Input Variables	119
TIV13	Tracer Input Source 3	LPM_TracerInput_03	Tracer Input Variables	120
TIV14	Tracer Input Source 4	LPM_TracerInput_04	Tracer Input Variables	121
TIV15	Tracer Input Source 5	LPM_TracerInput_05	Tracer Input Variables	122
TIV16	Tracer Input Source 6	LPM_TracerInput_06	Tracer Input Variables	123
TIV17	Tracer Input Source 7	LPM_TracerInput_07	Tracer Input Variables	124
TIV18	Tracer Input Source 8	LPM_TracerInput_08	Tracer Input Variables	125
TIV19	Tracer Input Source 9	LPM_TracerInput_09	Tracer Input Variables	126
TIV20	Tracer Input Source 10	LPM_TracerInput_10	Tracer Input Variables	127

Page 46 of 54

TIV21	Scaling Factor 1	LPM_ScaleFact_01	Tracer Input Variables	128
TIV22	Scaling Factor 2	LPM_ScaleFact_02	Tracer Input Variables	129
TIV23	Scaling Factor 3	LPM_ScaleFact_03	Tracer Input Variables	130
TIV24	Scaling Factor 4	LPM_ScaleFact_04	Tracer Input Variables	131
TIV25	Scaling Factor 5	LPM_ScaleFact_05	Tracer Input Variables	132
TIV26	Scaling Factor 6	LPM_ScaleFact_06	Tracer Input Variables	133
TIV27	Scaling Factor 7	LPM_ScaleFact_07	Tracer Input Variables	134
TIV28	Scaling Factor 8	LPM_ScaleFact_08	Tracer Input Variables	135
TIV29	Scaling Factor 9	LPM_ScaleFact_09	Tracer Input Variables	136
TIV30	Scaling Factor 10	LPM_ScaleFact_10	Tracer Input Variables	137

Page 47 of 54

TIV31	UZ travel time treatment 1	LPM_UZtt_Treat_01	Tracer Input Variables	138
TIV32	UZ travel time treatment 2	LPM_UZtt_Treat_02	Tracer Input Variables	139
TIV33	UZ travel time treatment 3	LPM_UZtt_Treat_03	Tracer Input Variables	140
TIV34	UZ travel time treatment 4	LPM_UZtt_Treat_04	Tracer Input Variables	141
TIV35	UZ travel time treatment 5	LPM_UZtt_Treat_05	Tracer Input Variables	142
TIV36	UZ travel time treatment 6	LPM_UZtt_Treat_06	Tracer Input Variables	143
TIV37	UZ travel time treatment 7	LPM_UZtt_Treat_07	Tracer Input Variables	144
TIV38	UZ travel time treatment 8	LPM_UZtt_Treat_08	Tracer Input Variables	145
TIV39	UZ travel time treatment 9	LPM_UZtt_Treat_09	Tracer Input Variables	146
TIV40	UZ travel time treatment 10	LPM_UZtt_Treat_10	Tracer Input Variables	147

Page 48 of 54

TIV41	Dissolved inorganic carbon 1	LPM_DIC_C1	Tracer Input Variables	148	
TIV42	Dissolved inorganic carbon 2	LPM_DIC_C2	Tracer Input Variables	149	
TIV43	Uranium	LPM_U_ppm	Tracer Input Variables	150	PPM
TIV44	Thorium	LPM_Th_ppm	Tracer Input Variables	151	PPM
TIV45	Porosity	LPM_Porosity	Tracer Input Variables	152	
TIV46	Bulk Density	LPM_BulkDensity	Tracer Input Variables	153	
TIV47	Helium solution rate	LPM_He_SolnRate_ccpgpyr	Tracer Input Variables	154	
TIV48	Time Increment	LPM_TimeStepOfInput	Tracer Input Variables	155	
TRC01	Tracer 1	LPM_Meas_Tracer_01	Measured Tracer Data	50	TracerID from table 2 TracerLPM needs parameter s for sample

					conc. & std err.
TRC03	Tracer 2	LPM_Meas_Tracer_02	Measured Tracer Data	52	TracerID from table 2 TracerLPM needs parameter s for sample conc. & std err.
TRC05	Tracer 3	LPM_Meas_Tracer_03	Measured Tracer Data	54	TracerID from table 2 TracerLPM needs parameter s for sample conc. & std err.
TRC07	Tracer 4	LPM_Meas_Tracer_04	Measured Tracer Data	56	TracerID from table 2 TracerLPM needs parameter s for sample conc. & std err.
TRC09	Tracer 5	LPM_Meas_Tracer_05	Measured Tracer Data	58	TracerID from table 2 TracerLPM needs parameter s for sample conc. & std err.

TRC11	Tracer 6	LPM_Meas_Tracer_06	Measured Tracer Data	60	TracerID from table 2 TracerLPM needs parameter s for sample conc. & std err.
TRC13	Tracer 7	LPM_Meas_Tracer_07	Measured Tracer Data	62	TracerID from table 2 TracerLPM needs parameter s for sample conc. & std err.
TRC15	Tracer 8	LPM_Meas_Tracer_08	Measured Tracer Data	64	TracerID from table 2 TracerLPM needs parameter s for sample conc. & std err.
TRC17	Tracer 9	LPM_Meas_Tracer_09	Measured Tracer Data	66	TracerID from table 2 TracerLPM needs parameter s for sample conc. & std err.
TRC19	Tracer 10	LPM_Meas_Tracer_10	Measured Tracer Data	68	TracerID from table 2 TracerLPM needs

Page 51 of 54

		parame	ter
		S	for
		sample	
		conc.	&
		std err.	

