



Hydrogeological processes and geological settings over Europe controlling dissolved geogenic and anthropogenic elements in groundwater of relevance to human health and the status of dependent ecosystem

Authors and affiliation: see list of authors

# **Deliverable D.7-3**

Results of the vulnerability assessment of the upper aquifer to pollution at pilot areas scale: statistics and sensitivity analysis E-mail of lead author: <u>georgina.arno@icgc.cat</u> <u>stefan.broda@bgr.de</u>

Version: 28-05-2021

This report is part of a project that has received funding by the European Union's Horizon 2020 research and innovation programme under grant agreement number 731166.



| Deliverable Data                |                                            |                  |  |  |  |
|---------------------------------|--------------------------------------------|------------------|--|--|--|
| Deliverable number              | D.7-3                                      |                  |  |  |  |
| Dissemination level             | Public                                     |                  |  |  |  |
| Deliverable name                | Report                                     |                  |  |  |  |
| Work package                    | WP7, Harmonized vulnerability to pollution |                  |  |  |  |
|                                 | mapping of the upper aquifer               |                  |  |  |  |
| Lead WP/Deliverable beneficiary | BGR                                        |                  |  |  |  |
| Deliverable Status              |                                            |                  |  |  |  |
| Submitted (Author(s))           | 28/05/2021                                 | All WP7 partners |  |  |  |
| Verified (WP leader)            | 28/05/2021                                 | Broda, S.        |  |  |  |
| Approved (Coordinator)          | 28/05/2021                                 | Gourcy, L.       |  |  |  |
|                                 |                                            |                  |  |  |  |





# TABLE OF CONTENTS

| LIST | OF AU                     | THORS                                                                                                                                                                                                    | .2                   |
|------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LIST | OF FIG                    | URES                                                                                                                                                                                                     | .4                   |
| LIST | OF TAI                    | BLES                                                                                                                                                                                                     | .5                   |
| 1    | INTRC                     | DUCTION                                                                                                                                                                                                  | .6                   |
| 2    | WORk<br>2.1<br>2.2<br>2.3 | KFLOW AND METHODOLOGIES<br>DRASTIC and COP vulnerability index assessment<br>Statistical analysis of DRASTIC and COP results<br>Map single-parameter removal sensitivity analysis for the DRASTIC method | .7<br>.7<br>.8<br>.9 |
| 3    | RESUL                     | TS1                                                                                                                                                                                                      | 2                    |
| 4    | REFER                     | ENCES1                                                                                                                                                                                                   | 3                    |
| APPI | ENDIX                     | A1: VULNERABILITY INDEXES .DRASTIC ASSESSMENTS1                                                                                                                                                          | 4                    |
| APPI | ENDIX                     | A2: VULNERABILITY INDEXES .COP ASSESSMENTS2                                                                                                                                                              | 25                   |
| APPI | ENDIX                     | B1: SPATIAL DISTRIBUTION OF THE SENSITIVITY INDEX (S)                                                                                                                                                    | 0                    |
| APPI | ENDIX                     | B2: SPATIAL DISTRIBUTION OF THE EFFECTIVE WEIGHT INDEX (W)4                                                                                                                                              | 1                    |
| APPI | ENDIX                     | C: POWERBI REPORT SCREENSHOTS5                                                                                                                                                                           | 2                    |
| APPI | ENDIX                     | D: DRASTIC VULNERABILITY CLASSES DEFINITIONS5                                                                                                                                                            | ;9                   |





# LIST OF AUTHORS

Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) – German Federal Institute for Geosciences and Natural Resources

Broda, S., Duscher, K., Günther, A., Reichling, J.

**Bureau de Recherches Géologiques et Minières (BRGM) – French Geological Survey** Schomburgk, S.

**Geologische Bundesanstalt (GBA) – Geological Survey of Austria** Schubert, G., Uhmann, A., Bottig, M., Elster, D., Berka, R.

Geološki Zavod Slovenije (GeoZS) – Geological Survey of Slovenia Cerar, S., Meglič, P.

De Nationale Geologiske Undersøgelser for Danmark og Grønland (GEUS) – Geological Survey of Denmark and Greenland

Voutchkova, D., Schullehner, J., Hansen, B.

**Geological Survey of Ireland (GSI)** Hickey, C., Hunter Williams, T., Bishop, H.

**Geologian Tutkimuskeskus (GTK) – Geological Survey of Finland** Luoma, S., Ikonen, J.

Hellenic Survey of Geology & Mineral Exploration (HSGME) Kontodimos, K., Lappas, I.

Institut Cartogràfic i Geològic de Catalunya (ICGC) – Cartographic and Geological Institute of Catalonia Arnó, G., Conesa, A., Herms, J.I.

Instituto Geológico y Minero de España (IGME) – Geological Survey of Spain Baena-Ruiz, L., Pulido-Velázquez, D.P.

**Institutul Geologic al României (IGR) – Geological Institute of Romania** Persa, D., Mercan, A.

Landesamt für Bergbau, Energie und Geologie Niedersachsen (LBEG) - Lower Saxony State Office for Mining, Energy and Geology Witthoeft, M.

Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg (LBGR) – Brandenburg State Office for Mining, Geology and Raw Materials Janetz, S.

Lietuvos Geologijos Tarnyba prie Aplinkos Ministerijos (LGT) Arustienė, J.





**Magyar Bányászati és Földtani Szolgálat (MBFSZ) – Mining and Geological Survey of Hungary** Gál, N.E.

Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy (PIG-PIB) – Polish Geological Institute - National Research Institute

Nidental, M., Jarmułowicz-Siekiera, M.





# LIST OF FIGURES

| Figure 1: Classification of vulnerability indexes for the DRASTIC and COP methods              | 8   |
|------------------------------------------------------------------------------------------------|-----|
| Figure 2: Main statistical parameters calculated for the vulnerability indexes (DRASTIC and Co | OP  |
| methods) and also for the corresponding parameters indexes of each method                      | 8   |
| Figure 3: Sensitivity analysis index (S) and effective parameter weight (W) definitions a      | ınd |
| formulas to perform the map single-parameter removal sensitivity analysis.                     | 10  |
| Figure 4: Screenshots of the PowerBI report of D.7-3.                                          | 12  |





# LIST OF TABLES





## 1 INTRODUCTION

This deliverable is part of work package (WP) 7 in the overall project HOVER - Hydrogeological processes and Geological settings over Europe controlling dissolved geogenic and anthropogenic elements in groundwater of relevance to human health and the status of dependent ecosystems.

It has been promoted by the ERA-NET GeoERA (Establishing the European Geological Surveys Research Area to deliver a Geological Service for Europe). In this European project, led by the German Geological Survey (BGR), 16 geological services from 13 different countries participate. It focuses on the harmonized vulnerability to pollution assessment and mapping of the upper aquifer at both pan-European scale and national/cross-border and regional scale in 12 pilot areas.

Deliverable D.7-3 is the third report of the following four HOVER-WP7 deliverables:

- DeliverableD.7-1. Comparison of internationally commonly applied index methodologies for assessing the vulnerability of the upper aquifer to pollution. (Broda et al., 2019).
- Deliverable D.7-2. Compilation of the examination results of the data sets of input data for the respective methodologies assessing vulnerability of the upper aquifer to pollution. (Broda et al., 2020).
- Deliverable D.7-3. Results of the vulnerability assessment of the upper aquifer to pollution at pilot areas scale: statistics and sensitivity analysis (Arnó et al., 2021).
- Deliverable D.7-4. Delivering of cross sections and maps of extend of selected aquifers in specific national pilot areas. (Pulido et al., 2020).

Deliverable D.7-3 describes the workflow and methodologies used to first obtain the final DRASTIC and COP vulnerability indexes which are comparable between pilots and also with the pan-European DRASTIC map and second to analyze, from a numerical point of view, the results by computing main statistical parameters and by performing a sensitivity analysis of the 7 DRASTIC parameters indexes.

The sources of the input data used for the vulnerability assessment in the individual pilot areas are documented in deliverable D.7-2.

This D.7-3 PDF report is complemented and needs to be visualized jointly with the dashboard report made in PowerBI application which is available <u>here</u>. It permits to create interactive visualizations and filters which allow end users to create their own reports and visualizations.

Appendix A includes the final DRASTIC and COP indexes assessments (A1 for DRASTIC and A2 for COP) and Appendix B shows the spatial distributions of the sensitivity and the effective weight indexes computed. Appendix C shows the screenshots of the D.7-3 powerBI dashboard report. Appendix D describes the meaning of the DRASTIC vulnerability classes.





# 2 WORKFLOW AND METHODOLOGIES

In a previous step (Broda et al., 2019) two index methods were identified from a set of proposed approaches to evaluate the intrinsic groundwater vulnerability. The DRASTIC method (Aller et al., 1987) was used for the continent-wide evaluation and for non-karstic regions in the pilot areas. In those parts of the pilot regions with karstic features dominating groundwater flow, the COP approach (Vías et al., 2006) was applied.

For the application of both methods a set of spatially distributed input data were required. Documentation of the input data/input layers that were used for the pan-European and the pilot scale vulnerability assessments and pilot areas geological and hydrogeological descriptions are included in Broda et al. (2020).

As input DRASTIC and COP layers were prepared based on the same ratings and weights of source datasets according to given classification schemes, DRASTIC and COP indexes values were calculated obtaining comparable results between each pilot and also with the pan-EU DRASTIC map.

The vulnerability maps obtained are important tools for groundwater management, through which specific high vulnerability areas can be identified and preventive or corrective actions can be taken at different scales for their protection. In HOVER WP7 pilot area scales range from 1:10.000 up to 1:250.000.

At this point DRASTIC and COP vulnerability assessments maps of the 12 pilot areas were analyzed from a statistical point of view. Furthermore, for the vulnerability DRASTIC assessment, a map single parameter removal sensitivity analysis has also been performed to study the contribution of each individual variables.

It should be pointed out that the two intrinsic vulnerability assessment methods only consider the natural intrinsic factors and are independent to the source of contamination. For this reason, the vulnerability maps depend mainly on the hydrodynamic characteristics of each region and it is not easy to establish a validation method that considers the specificities of each site.

Some validation tests have been carried out in the framework of HOVER WP7 project considering the land use spatial distribution maps of some pilots and nitrate concentrations data. Correlation obtained with the vulnerability assessment maps (DRASTIC and COP) was very low. Contaminant loading for many years (in some areas mor than 30) and local and regional hydrogeological conditions determine that the actual distribution of nitrates concentrations in groundwater is related with many other processes.

#### 2.1 DRASTIC and COP vulnerability index assessment

After obtaining the input data, DRASTIC and COP vulnerability indexes were calculated according to the two original methods selected (Broda et al., 2020) by geoprocessing data based on GIS techniques.

DRASTIC vulnerability index (DVI) is an index methodology based on the natural characteristics of media. It contemplates seven different parameters: depth to groundwater level (D), net recharge (R), aquifer media (A), soil media (S), topography (T), impact of the vadose zone (I), hydraulic conductivity of the aquifer (C). Every parameter has a weight and a rating depending on their relative impact to potential contamination as follows:





#### DVI = 5D x 4R x 3A x 2S x 1T x 5I x 3C

The COP method is a parametric model specifically developed for karstic systems that takes into account the kind of preferent flow, concentrated or diffusive (C factor), the unsaturated zone of the overlying layers (O factor) and the different climatic conditions (Precipitation, P factor).

To obtain comparable results between pilot areas, DRASTIC index spatial representation considers five classes which are the maximum value of DRASTIC methodology (230) minus the minimum value of DRASTIC methodology (23) divided by 5. For the COP index, the original method (Vías et al., 2006), also five classes of vulnerability are proposed (see Figure 1).



*Figure 1: Classification of vulnerability indexes for the DRASTIC and COP methods.* 

The results are shown in Appendix A1 (for DRASTIC) and A2 (for COP). They are also available at the <u>EGDI platform</u>. A definition of the meaning of the individual vulnerability classes, along with suggested action plans and required protection measures can be found in Appendix D.

# 2.2 Statistical analysis of DRASTIC and COP results

To get a general overview of the vulnerability assessment made in each pilot and to have numerical comparable results between them, a GIS computation was used to obtain the mean, median, minimum (Min), maximum (Max) values, the standard deviation ( $\sigma_v$ ) and the variation coefficient (Cv) for each pilot and for both the final vulnerability DRASTIC and COP indexes. Statistics were also computed for each input parameter indexes.

| DRASTIC and COP index (V)         | DRASTIC and COP input<br>parameters indexes (P) |
|-----------------------------------|-------------------------------------------------|
| mean ( $\overline{V}$ )           | mean $(\overline{P})$                           |
| median $(\tilde{V})$              | median $(\tilde{P})$                            |
| minimum ( <u>V<sub>min</sub>)</u> | minimum ( <u>P<sub>min</sub>)</u>               |
| maximum (V <sub>max</sub> )       | maximum (P <sub>max</sub> )                     |
| standard deviation ( $\sigma_v$ ) | standard deviation ( $\sigma_p$ )               |
| variation coefficient $(VC_v)$    | variation coefficient (PCv)                     |

Figure 2: Main statistical parameters calculated for the vulnerability indexes (DRASTIC and COP methods) and also for the corresponding parameters indexes of each method.





The variation coefficient (Cv) is defined as:

$$VC_v = \left(\frac{\sigma_v}{\overline{V}}\right) 100 (\%)$$
 and  $PC_v = \left(\frac{\sigma_p}{\overline{P}}\right) 100 (\%)$ 

Where  $\overline{V}$  is the mean value of the vulnerability index and  $\overline{P}$  the mean value of the parameter index considered.

Cv indicates, in a relative way, the degree of values variability so for Cv<80% the dataset could be classified as homogeneous and the mean values representative while for Cv>80% mean values could be considered not representative enough as dataset is classified as heterogeneous. The higher variability of the parameters implies a greater contribution toward the variation of the vulnerability index and reverse.

| Pilot area                           | Country   | Participant | Area<br>(km²) | Cell<br>size (m) | Scale   | Parameter | Mean | STD | Cv (%) |
|--------------------------------------|-----------|-------------|---------------|------------------|---------|-----------|------|-----|--------|
| Atalanti alluvial aquifer            | Greece    | HSGME       | 54            | 50               | 1:10K   | DRASTIC   | 112  | 14  | 12     |
| Boyne                                | Ireland   | GSI         | 2.627         | 10               | -       | DRASTIC   | 125  | 26  | 21     |
| Catalunya                            | Spain     |             | 20 110        | 50               | 1.100K  | DRASTIC   | 99   | 30  | 30     |
| Catalunya                            | Spain     | 1000        | 32.112        | 50               | 1.100K  | COP       | 2    | 2   | 81     |
| Cobadin Mangalia                     | Pomonio   |             | 2 102         | 50               | 1.2004  | DRASTIC   | 100  | 16  | 16     |
| Cobadii i-ivialigalia                | Nomania   | IGIX        | 2.192         | 50               | 1.2001  | COP       | 3    | 1   | 39     |
| Finland                              | Finland   | GTK         | 338.44<br>0   | 200              | 1:200K  | DRASTIC   | 124  | 24  | 19     |
| Lower Oder/Odra river German<br>part | Germany   | BGR-LBGR    | 4.553         | 200              | 1:250K  | DRASTIC   | 120  | 23  | 19     |
| Lower Oder/Odra river Polish<br>part | Poland    | PIG-PIB     | 2.821         | 200              | 1:250K  | DRASTIC   | 127  | 34  | 27     |
| Rockingham                           | Ireland   | GSI         | 15            | 10               | -       | COP       | 1    | 1   | 115    |
| Slavania                             | Slovenia  | C 2278      | 20 272        | 100              | 4.05014 | DRASTIC   | 130  | 31  | 23     |
| Slovenia                             | Sioverila | Geoza       | 20.275        | 100              | 1.250K  | COP       | 1    | 1   | 105    |
| Tønder                               | Denmark   | GEUS        | 293           | 100              | 1:25K   | DRASTIC   | 139  | 15  | 11     |
| Traun-Enns-Platte                    | Austria   | GBA         | 810           | 100              | 1:100K  | DRASTIC   | 135  | 30  | 22     |
| Upper Guadiana Basin                 | Spain     | IGME        | 1/ 003        | 100              | 1:50K   | DRASTIC   | 103  | 22  | 22     |
|                                      | Spain     | IGME        | 14.093        | 100              |         | COP       | 3    | 2   | 57     |

Table 1: Main statistics of the DRASTIC and COP vulnerability indexes for each pilot.

#### 2.3 Map single-parameter removal sensitivity analysis for the DRASTIC method

Input layers of each pilot area have been generated according to available and/or accessible data sources. This suggests the results analysis or interpretation that can be done for a region or pilot area cannot be extrapolate to other areas as they have different hydrogeological conditions and source data.

In order to establish the relationship between the vulnerability obtained and the parameters considered a map single-parameter removal sensitivity analysis was performed. The method, based on Lodwick et al. (1990), Napolitano et al. (1996) and Adeyinka (2020), was developed for





weighted sum intersection overlays and can be easily applied to the DRASTIC expression (not valid for the COP method).

This sensitivity analysis allows to study the contribution of individual variables (input parameters) one by one, on the resultant output of an analytical model. Two parameters were calculated:

The sensitivity index (S) for each parameter: it is usually used to determine if all the parameters contribute equally and sometimes it is analysed jointly with the Pairwise correlation matrix between the analysed parameters (see Figure 3*Figure 1*):

a) The effective parameter weight (W) which allows to compare the real weight that each parameter had in each pilot area with the theoretical weight assigned by the DRASTIC method.



Figure 3: Sensitivity analysis index (S) and effective parameter weight (W) definitions and formulas to perform the map single-parameter removal sensitivity analysis.

At the end 7 maps (one by each DRASTIC parameter) and their main statistics were computed for the "S" index (Sd, Sr, Sa, Ss, St, Si, Sc) and 7 maps (one by each DRASTIC parameter) and their main statistics were computed for the "W" index (Wd, Wr, Wa, Ws, Wt, Wi, Wc).

To complement the statistical analysis, pairwise correlations between the 7 parameters for each pilot were calculated. The correlation matrix for each pilot area (square table that shows the correlation coefficients between several pairwise combination of variables) are included in the PowerBI report and show the relationship between the seven DRASTIC parameters between each other. Values meaning are:

- -1 indicates a perfectly negative linear correlation between two variables.
- 0 indicates no linear correlation between two variables.
- 1 indicates a perfectly positive linear correlation between two variables.
- NaN values correspond to correlations which one or both variables are constant within the pilot area.





The further away the correlation coefficient is from zero, the stronger the relationship between the two variables.





# 3 RESULTS

Once the analysis has been completed, all the information acquired has been processed with the PowerBI Desktop Application, which enables data for a further exploration and visualization.

| alla Undragonalaginal processors and gos                                                                                                     | logical settings over Europe | STATISTICAL ANALYSIS RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $5 \leftarrow \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSITIVITY ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                     | 5 ←                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| HOVER Controlling dissolved geogenic and                                                                                                     | anthropogenic elements in    | Statistical analysis of DRASTIC and COP results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Map single-parameter removal sensitivity analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ferrit de serventer index (0)                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                      |
| groundwater of relevance to humar<br>dependent ecosystem (HOVER)                                                                             | health and the status of     | Of compatition has been used to alliters the mean median minimum (Min), maximum (Min) adules, the standard lows<br>from valenesities (Min) and Min) and Min (Min) and Min (Min) and Min). The distance of the distance<br>adultation of valeneshing classes (sery time, low, moderate high-and very high a allow holes to test the result of the<br>(High, low (dist High), moderate (Min) (High (High (High)). High (High) (H | Ion (510) and the variation coefficient (CV). for each pilot and for both the<br>iso homogeneous and the mean values considered representative. The<br>DAGNTC and COE methods, DAGNTC valuesability (Less singless very low<br>1. low (IS-10), moderate (1-2), high (2-4), very high (4-10).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | This sensitivity analysis allows to multy the combination of individual variables (input parameters) one by one, on the<br>multiter using of all an analysis mode. Two parameters have been calculated, a/the sensitivity index (2) and the<br>effects parameter using/10(3) base Figure 2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Identifies the sensibility of the schwardelity<br>towards removing one or does maps from<br>the schwardelity protects. If is computed<br>as follow                                                                                                                                                                                                                                  | Contribution of each parameter in 1<br>ford DRASTIC subweaking index<br>orthogics sergify 7 is computed as<br>billions |
|                                                                                                                                              |                              | Main statistical variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Abit area and parameter selection is needed to visualize individual results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The method, based on Loberck et al. (1990), Napolitane et al. (1996) and Adepinia (2000), was developed for<br>weighted sum intersection overlass and can be easily applied to the expression to sampute DRACTC indexes but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $S = \left[\frac{\left\lfloor \frac{N}{2} - \frac{N}{2} \right\rfloor}{N}\right] + 1000$                                                                                                                                                                                                                                                                                            | $\mathcal{W}=100P_{c}P_{W}/V$                                                                                          |
| IOVER - WP7. Harmonized vulnerability to pollution                                                                                           |                              | Mean DBACTIC avies value Mean CDP index value Prior area selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bigut parameter adection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for COPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 senaltudy index teasure expressed as<br>variables index (for each parameter)                                                                                                                                                                                                                                                                                                      | W effective sample of each parameter                                                                                   |
| sapping of the upper aquifer (HaVuPo)                                                                                                        | Introduction                 | Plot Ave Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | orym Participant Parameter Mean Min Man SPD Cr (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sometimes it is analyzed jointly with the "Tarvise conduction matrix" between the analyzed parameters. The effective<br>parameters would not allow to compare the real would that each parameter had in each area with the theoretical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | submitting<br>In and its resident of parameters used to<br>compute V and V respectively.                                                                                                                                                                                                                                                                                            | parameter respectively.<br>V Are needed subscripting index                                                             |
| alivarable D 7-3                                                                                                                             |                              | The second secon       | HOME A 53 50 53 50 80<br>HOME C 21 20 40 53 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | weight assigned by the DRASTIC method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paum 3 Sanah-ty analysis hake (2) and whether<br>and on the map angle consider minor of sandhill                                                                                                                                                                                                                                                                                    | a periode segle //E definition and                                                                                     |
| esults of the vulnerability assessment of the upper aquifer to<br>ollution at pilot areas scale (statistics and sensitivity analysis)        | Statistics                   | Long provide CASTC characteristics     Long provide             | HOME         DATIC         H3         H4         H5         H5 <t< td=""><td>S - sensitivity parameter index<br/>tandoty of the schedulidy taxads sensoring one or more maps from the schedulidy analysis<br/>(Contribution of the<br/>parameter index scheduling)</td><td>weight parameter index<br/>sub parameter in the final ORASTIC values</td><td>rability index.</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S - sensitivity parameter index<br>tandoty of the schedulidy taxads sensoring one or more maps from the schedulidy analysis<br>(Contribution of the<br>parameter index scheduling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | weight parameter index<br>sub parameter in the final ORASTIC values                                                                                                                                                                                                                                                                                                                 | rability index.                                                                                                        |
|                                                                                                                                              | Sensitivity analysis         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00         L         24         00         24         10           00         DMINC         02         33         00         24         10           00         DMINC         02         33         00         24         00           01         14         14         210         244         01           00         1         14         33         00         24         01           00         1         14         33         00         24         01           00         4         44         34         00         27         03           00         9         45         16         00         27         03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test         V         Test         V         Test           PM Ass         Antiget forwary branche Sone         Int         Int         Patcher         Patcher           Rest Accessed         Sone         Int         Int         Int         Patcher         Patcher           Rest Accessed         Sone         Int         Int         Int         Patcher         Patcher           Rest Accessed         Sone         Int         Int         Int         Patcher         Patcher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Articipant Country Parameter /<br>Articipant Country Parameter /<br>Art HOM Owen W/<br>Art HOM Owen W/                                                                                                                                                                                                                                                                              |                                                                                                                        |
|                                                                                                                                              | Correlation matrix           | International of contractivity classes for each pillet (%)         International of contractivity classes for acts pillet (%)           Enternational of contractivity classes (1)         International or contractivity classes (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | With one and method adjection is needed to visualize individual results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | None dynamic point         CODE         Server         < | N         HOM         Gauge         ML           Arr         HOM         Gauge         ML           G2         Indeed         ML           G3         Indeed         ML |                                                                                                                        |
|                                                                                                                                              | List of authors              | The second secon       | Dividing of the second se | EBACTX sensitivity parameter index mean value (D) OMASTIC parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eten effective weight (M)                                                                                                                                                                                                                                                                                                                                                           | an La                                                                                                                  |
| COC Authors and atfiliation: see list of authors<br>Generative Human<br>E-mail of lead authors: geopring.amo@iopc.cat<br>stefan.boode@bys.de | References                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ADA         Gaucia         MODBE         CMAINC         Way two         0           ADA         Gaucia         MODBE         CMAINC         Linux         AD           ADA         Gaucia         MODBE         CMAINC         Linux         AD           ADA         Gaucia         MODBE         CMAINC         Modulate         SH           ADA         Gaucia         MODBE         CMAINC         Modulate         SH           ADA         Gaucia         MODBE         CMAINC         May two         SH           ADA         Gaucia         MODBE         CMAINC         May two         SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 📩 tal In thái ar ann al til bi bria 👘 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , la thua ha ha ha h                                                                                                                                                                                                                                                                                                                                                                | ddhada                                                                                                                 |
| Version: 25-70-2021                                                                                                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B/F Maral 00 DAUS, Byym 1<br>B/F Maral 00 DAUS, Un 27<br>B/F Maral 00 DAUS, Maral 1<br>B/F Maral 00 DAUS, Np 0<br>B/F Maral 00 DAUS, Np 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11/1/11                                                                                                                                                                                                                                                                                                                                                                             | 111/                                                                                                                   |

Figure 4: Screenshots of the PowerBI report of D.7-3.

Users can use interactive graphs, filters and maps to visualize local or global results and to create an overall or detailed report. This way, the application turns into a management tool of the project information which can be used for decision-making, both at environmental protection actions and the improvement / optimization of input data.

It contains six pages or dashboards. The first one "Get started" has an interactive index to move within the PowerBI report, and the second one "Introduction" describes the framework and main goals of HOVER - WP7 project. The "Statistical analysis", "Sensitivity analysis" and the "Pairwise correlation matrix" pages summarize the obtained results from a numerical point of view. Finally, the "List of authors" and "References" are listed in the PowerBI.

For one or more pilot areas the distribution of vulnerability classes (%) and the mean, minimum, maximum, the standard deviation and the variation coefficient values of the vulnerability indexes and parameters considered can be visualized.

The Sensitivity analysis jointly with the Pairwise correlation matrix gives a general idea of which are the most significant parameters in each pilot depending on the hydrogeological settings and the available input data. Thus, the trend of S and W parameter indexes (from the highest to the lowest values) are different from one pilot to another so conclusions have to be drawn from a detailed hydrogeological knowledge of each site. For instance, the D (depth to water table) could have a great impact on the final DVI indicating that having available groundwater level measurements could be critical to enhance the results or to necessary to take improvement actions in critical areas / subareas or to concentrate on obtaining higher quality information about some characteristic or parameter of the system. In summary, it gives an idea about where to focus future efforts in a more efficient way.

The effective parameter weight (W) informs about the real weight of each of the DRASTIC parameters which can be compared with the theorical weight assigned by the DRASTIC method.

It should be noted that the effective weight obtained vary according to the pilot area. The reason is that the weight of them dependent not only on the value of the parameter but also on the value of the rest of them (which can be different in each context or area).





# 4 **REFERENCES**

Adeyinka, S. (2020). Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria. International Journal of Environmental Research and Public Health. MDPI. April 2020. 17 pages.

Aller, L., Bennett, T., Lehr, J.H., Petty, R.H. & Hackett, G. (1987): DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. - USEPA Report 600/2- 87/035. Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma.

Arnó, G. & Broda, S. (2020): Deliverable D.7-3. Results of the vulnerability assessment of the upper aquifer to pollution at pilot areas scale: statistics and sensitivity analysis. GeoERA HOVER WP7 report no. 3.

Broda, S., Günther, A. & Reichling, J. (2019): Deliverable D.7-1. Comparison of internationally commonly applied index methodologies for assessing the vulnerability of the upper aquifer to pollution. GeoERA HOVER WP7 report no. 1.

Broda, S., Günther, A. & Reichling, J. (2020): Deliverable D.7-2. Compilation of the examination results of the data sets of input data for the respective methodologies assessing vulnerability of the upper aquifer to pollution. GeoERA HOVER WP7 report no. 2.

Lodwick, W.A., et al. (1990). Attribute error and sensitivity analysis of map operations in geographical informations systems: Suitability analysis. Int. J. Geogr. Inf. Syst. 1990, 4, 413–428.

Napolitano, P.; Fabbri, A.G (1996). Single-Parameter Sensitivity Analysis for Aquifer Vulnerability Assessment Using DRASTIC and SINTACS. In Application of Geographic Information Systems in Hydrology and Water Resources Management; Kovar, K., Nachtnebel, H.P., Eds.; IAHS Press: Wallingford, UK, 1996; pp. 559–566.

Pulido, D. (2020). Deliverable D.7-4: Delivering of cross sections and maps of extend of selected aquifers in specific national pilot areas. GeoERA HOVER WP7 report no. 4.

Vías, J.M., Andreo, B., Perles, M.J. et al (2006). Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14, 912–925. https://doi.org/10.1007/s10040-006-0023-6





### APPENDIX A1: VULNERABILITY INDEXES .DRASTIC ASSESSMENTS

#### Pilot area Atalanti alluvial aquifer (Greece) - HSGME







### Pilot area Boyne (Ireland) - GSI







### Pilot area Catalonia (Spain) - ICGC







## Pilot area Cobadin-Mangalia (Romania) - IGR







## Pilot area Finland (Finland) – GTK







# Pilot area Middle and Lower Oder/Odra river (German part) – PGI/LBGR/BGR







# Pilot area Middle and Lower Oder/Odra river (Polish part) – PGI/LBGR/BGR







## Pilot area Slovenia (Slovenia) – GeoZS







### Pilot area Tønder (Denmark) – GEUS







# Pilot area Traun-Enns-Platte (Austria) – GBA







# Pilot area Upper Guadiana Basin (Spain) – IGME







### APPENDIX A2: VULNERABILITY INDEXES .COP ASSESSMENTS

#### Pilot area Catalonia (Spain) - ICGC







### Pilot area Cobadin-Mangalia (Romania) - IGR







# Pilot area Rockingham (Ireland) - GSI







# Pilot area Slovenia (Slovenia) – GeoZS



![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

### Pilot area Upper Guadiana Basin (Spain) – IGME

![](_page_29_Figure_4.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

# APPENDIX B1: SPATIAL DISTRIBUTION OF THE SENSITIVITY INDEX (S)

#### Pilot area Atalanti alluvial aquifer (Greece) - HSGME

![](_page_30_Figure_5.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

# Pilot area Boyne (Ireland) - GSI

![](_page_31_Figure_4.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_32_Picture_1.jpeg)

# Pilot area Catalonia (Spain) - ICGC

![](_page_32_Figure_4.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

# Pilot area Cobadin-Mangalia (Romania) - IGR

![](_page_33_Figure_4.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

# Pilot area Finland (Finland) – GTK

![](_page_34_Figure_4.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

## Pilot area Middle and Lower Oder/Odra river (German part) – PGI/LBGR/BGR

![](_page_35_Figure_4.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

## Pilot area Middle and Lower Oder/Odra river (Polish part) – PGI/LBGR/BGR

![](_page_36_Figure_4.jpeg)

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

# Pilot area Slovenia (Slovenia) – GeoZS

![](_page_37_Figure_4.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

# Pilot area Tønder (Denmark) – GEUS

![](_page_38_Figure_4.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

# Pilot area Traun-Enns-Platte (Austria) – GBA

![](_page_39_Figure_4.jpeg)

![](_page_40_Picture_0.jpeg)

![](_page_40_Picture_1.jpeg)

# Pilot area Upper Guadiana Basin (Spain) – IGME

![](_page_40_Figure_4.jpeg)

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_1.jpeg)

## APPENDIX B2: SPATIAL DISTRIBUTION OF THE EFFECTIVE WEIGHT INDEX (W)

#### Pilot area Atalanti alluvial aquifer (Greece) - HSGME

![](_page_41_Picture_5.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

# Pilot area Boyne (Ireland) - GSI

![](_page_42_Figure_4.jpeg)

![](_page_43_Picture_0.jpeg)

![](_page_43_Picture_1.jpeg)

# Pilot area Catalonia (Spain) - ICGC

![](_page_43_Figure_4.jpeg)

![](_page_44_Picture_0.jpeg)

![](_page_44_Picture_1.jpeg)

# Pilot area Cobadin-Mangalia (Romania) - IGR

![](_page_44_Picture_4.jpeg)

![](_page_45_Picture_0.jpeg)

![](_page_45_Picture_1.jpeg)

# Pilot area Finland (Finland) – GTK

![](_page_45_Figure_4.jpeg)

![](_page_46_Picture_0.jpeg)

![](_page_46_Picture_1.jpeg)

## Pilot area Middle and Lower Oder/Odra river (German part) – PGI/LBGR/BGR

![](_page_46_Figure_4.jpeg)

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_1.jpeg)

# Pilot area Middle and Lower Oder/Odra river (Polish part) – PGI/LBGR/BGR

![](_page_47_Figure_4.jpeg)

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

# Pilot area Slovenia (Slovenia) – GeoZS

![](_page_48_Figure_4.jpeg)

![](_page_49_Picture_0.jpeg)

![](_page_49_Picture_1.jpeg)

# Pilot area Tønder (Denmark) – GEUS

![](_page_49_Figure_4.jpeg)

![](_page_50_Picture_0.jpeg)

![](_page_50_Picture_1.jpeg)

# Pilot area Traun-Enns-Platte (Austria) – GBA

![](_page_50_Figure_4.jpeg)

![](_page_51_Picture_0.jpeg)

![](_page_51_Picture_1.jpeg)

# Pilot area Upper Guadiana Basin (Spain) – IGME

![](_page_51_Figure_4.jpeg)

![](_page_52_Picture_0.jpeg)

![](_page_52_Picture_1.jpeg)

#### **APPENDIX C: POWERBI REPORT SCREENSHOTS**

Establishing the European Geological Surveys Research Area to deliver a Geological Service for Europe

![](_page_52_Picture_4.jpeg)

![](_page_52_Picture_5.jpeg)

Hydrogeological processes and geological settings over Europe controlling dissolved geogenic and anthropogenic elements in groundwater of relevance to human health and the status of dependent ecosystem (HOVER)

#### HOVER - WP7. Harmonized vulnerability to pollution mapping of the upper aquifer (HaVuPo)

#### **Deliverable D.7-3**

Results of the vulnerability assessment of the upper aquifer to pollution at pilot areas scale (statistics and sensitivity analysis)

![](_page_52_Picture_10.jpeg)

![](_page_52_Picture_11.jpeg)

![](_page_52_Picture_12.jpeg)

stefan.broda@bgr.de Version: 25-10-2021

![](_page_52_Picture_15.jpeg)

Copyright © 2021 GeoERA. This report is part of a project that has received funding by the European Union's Horizon 2020 research and innovation programme under grant agreement number 731166

![](_page_53_Picture_0.jpeg)

![](_page_53_Picture_1.jpeg)

#### Deliverable D.7-3

Results of the vulnerability assessment of the upper aquifer to pollution at pilot areas scale (statistics and sensitivity analysis)

![](_page_53_Picture_4.jpeg)

#### INTRODUCTION

#### Project framework

This deliverable 7.3 is part of work package (WP) 7 named **Harmonized vulnerability** to pollution mapping of the upper aquifer (HaVuPo) in the overall project HOVER (Hydrogeological processes and Geological settings **over** Europe controlling dissolved geogenic and anthropogenic elements in groundwater of relevance to human health and the status of dependent ecosystems).

It was promoted by the ERA-NET GeoERA (Establishing the European Geological Surveys Research Area to deliver a Geological Service for Europe). In this European project, led by the German Geological Survey (BGR), 16 geological services from 13 different countries participated.

> Click here for more information about the HOVER project and access the reports deliverables D.7-1, D.7-2 and D.7-4

![](_page_53_Picture_10.jpeg)

Figure 1: HOVER WP7 partners and demonstration pilot areas indicating the vulnerability assessment methods applied (D = DRASTIC and COP).

#### Main goals

• WP7 of the GeoERA HOVER project deals with groundwater vulnerability assessment to pollution of the shallow upper aquifer

 Vulnerability across Europe was assessed applying the DRASTIC method (Aller, L., 1987) in 11 pilot areas and the COP method (Vías J.M., 2006) for karst systems in 5 pilot areas (see Figure 1). DRASTIC was also applied for the vulnerability assessment at a small scale to obtain a pan-European overview (not included in this D.7-3).

 Obtain comparable results for which input DRASTIC and COP layers were prepared based on the same ratings and weights.

Input layers and vulnerability index maps are available at the EGDI plataform webside

| PILOT AREA                        | PARTICIPANT | COUNTRY  | AREA [km2] | CELL SIZE [m] | DRASTIC | СОР |
|-----------------------------------|-------------|----------|------------|---------------|---------|-----|
| Alluvial aquifer Atalanti         | HSGME       | Greece   | 54         | 50            | Х       | -   |
| Boyne                             | GSI         | Ireland  | 2627       | 10            | Х       | -   |
| Catalonia                         | ICGC        | Spain    | 32112      | 50            | Х       | Х   |
| Cobadin-Mangalia                  | IGR         | Romania  | 2192       | 50            | Х       | Х   |
| Finland                           | GTK         | Finland  | 338440     | 200           | Х       | -   |
| Lower Oder/Odra river German part | BGR-LBGR    | Germany  | 4553       | 200           | Х       | -   |
| Lower Oder/Odra river Polish part | PIG-PIB     | Poland   | 2821       | 200           | Х       | -   |
| Rockingham                        | GSI         | Ireland  | 15         | 10            | Х       | Х   |
| Slovenia                          | GeoZS       | Slovenia | 20273      | 100           | Х       | Х   |
| Tønder                            | GEUS        | Denmark  | 293        | 100           | Х       | -   |
| Traun-Enns-Platte                 | GBA         | Austria  | 810        | 100           | Х       | -   |
| Upper Guadiana basin              | IGME        | Spain    | 14093      | 100           | Х       | Х   |
| Total                             |             |          | 418283     |               |         |     |

#### Deliverable D.7-3 contents

• Results of the DRASTIC and COP methods are presented by performing a simple statistical analysis of the input data and the final vulnerability indexes for each pilot.

- . For the vulnerability DRASTIC assessment, the results of a map single parameter removal sensitivity analysis are also shown to study the contribution of individual variables.
- Using PowerBI Desktop Application, results are shown in three dashboards (statistical analysis, sensitivity analysis and Pairwise correlation matrix) by using interactive visualizations and filters which allow end users to create their own reports and visualizations.

Copyright © 2021 GEDERA. This report is part of a project that has received funding by the European Union's Horizon 2020 research and innovation programme under grant agreement number 731166

53

![](_page_54_Picture_0.jpeg)

![](_page_54_Picture_1.jpeg)

GeoERA

5 ←

#### Deliverable D.7-3

Results of the vulnerability assessment of the upper aquifer to pollution at pilot areas scale (statistics and sensitivity analysis)

#### STATISTICAL ANALYSIS RESULTS

#### Statistical analysis of DRASTIC and COP results

GIS computation has been used to obtain the mean, median, minimum (Min), maximum (Max) values, the standard deviation (STD) and the variation coefficient (Cv) for each pilot and for both the final vulnerability DRASTIC and COP indexes and the input parameters index. For Cv<80% the dataset could be classified as homogeneous and the mean values considered representative. The distribution of vulnerability classes (very low, low, moderate, high and very high) is also shown for both the results of the DRASTIC and COP methods. DRASTIC vulnerability class ranges: very low (<64), low (64-104), moderate (104-145), high (145-185), very high (>185). COP vulnerability class ranges: very low (<0.5), low (0.5-1), moderate (1-2), high (2-4), very high (4-15).

![](_page_54_Figure_7.jpeg)

Distribution of vulnerability classes for each pilot (%) Pilot area and method selection is needed to visualize individual results Distribution of vulnerabilty classes (%) Distribution of vulnerability classes (% Pilot area selection Vulnerability class Vulnerability method Todas DRASTIC Todas  $\sim$  $\sim$ 1 Pilot Area Acronym Country Institute Parameter Vulnerability Vulnreability class (%) Atalanti alluvial aquifer ATA Greece HSGME DRASTIC Very low 0 Atalanti alluvial aquifer ATA HSGME DRASTIC 42 Greece Low Atalanti alluvial aquifer ATA HSGME DRASTIC 58 Greece Moderate Atalanti alluvial aquifer ATA Greece HSGME DRASTIC High 0 Atalanti alluvial aquifer ATA HSGME DRASTIC Very High Greece 0 BOY Ireland DRASTIC Very low Boyne GSI DRASTIC Boyne BOY Ireland GSL Low 21 Boyne BOY Ireland GSI DRASTIC Moderate 58 Boyne BOY Ireland GSI DRASTIC High 19 DRASTIC Very High Boyne BOY Ireland GSI 1 Vulnerability ... 
Very low 
Low 
Moder...
High
Very Hi... Vulnerability cla... 
Very low 
Low 
Moderate 
High 
Very High 15 CAT Snain ICGC DRACTIC Very low Catalum

Copyright © 2021 GeoERA. This report is part of a project that has received funding by the European Union's Horizon 2020 research and innovation programme under grant agreement number 731166

#### 2

54

![](_page_55_Picture_0.jpeg)

![](_page_55_Picture_1.jpeg)

GeoERA

 $\leftarrow$ 

Deliverable D.7-3

Results of the vulnerability assessment of the upper aquifer to pollution at pilot areas scale (statistics and sensitivity analysis)

#### SENSITIVITY ANALYSIS

#### Map single-parameter removal sensitivity analysis

This sensitivity analysis allows to study the contribution of individual variables (input parameters) one by one, on the resultant output of an analytical model. Two parameters have been calculated: a) the sensitivity index (S) and the effective parameter weight (W) (see Figure 2).

The method, based on Lodwick et al. (1990), Napolitano et al. (1996) and Adeyinka (2020), was developed for weighted sum intersection overlays and can be easily applied to the expression to compute DRASTIC indexes (not for COP).

The sensitivity parameter index "S" is usually used to determine if all the parameters contribute equally and sometimes it is analyzed jointly with the "Pairwise correlation matrix" between the analysed parameters. The effective parameter weight (W) allow to compare the real weight that each parameter had in each area with the theoretical weight assigned by the DRASTIC method.

![](_page_55_Figure_9.jpeg)

Figure 2: Sensitivity analysis index (S) and effective parameter weight (W) definitions and formulas to perform the map single-parameter removal sensitivity analysis.

#### S - sensitivity parameter index

Sensitivity of the vulnerability towards removing one or more maps from the vulnerability analysis.

![](_page_55_Figure_13.jpeg)

![](_page_55_Figure_14.jpeg)

#### W - effective weight parameter index

Contribution of each parameter in the final DRASTIC vulnerability index.

|          |                  |             | $\sim$  | Todas     |      |     |       |
|----------|------------------|-------------|---------|-----------|------|-----|-------|
| Pilot A  | rea              | Participant | Country | Parameter | W-ı^ | Wd  | 21,18 |
| Atalanti | alluvial aquifer | HSGME       | Greece  | Wd        | 18   | Wr  | 14,47 |
| Atalanti | alluvial aquifer | HSGME       | Greece  | Wr        | 10   |     |       |
| Atalanti | alluvial aquifer | HSGME       | Greece  | Wa        | 13   | Wa  |       |
| Atalanti | alluvial aquifer | HSGME       | Greece  | Ws        | 7    | We  | 9.32  |
| Atalanti | alluvial aquifer | HSGME       | Greece  | Wt        | 8    |     |       |
| Atalanti | alluvial aquifer | HSGME       | Greece  | Wi        | 36   | Wt  | 6,77  |
| Atalanti | alluvial aquifer | HSGME       | Greece  | Wc        | 5    | W/i | 22.52 |
| Boyne    |                  | GSI         | Ireland | Wd        | 28   | *** | 22,32 |
| Boyne    |                  | GSI         | Ireland | Wr        | 201  | We  | 8,69  |

Finland Cover Oder... Cover Cover Pockingham Sover

Copyright © 2021 GeoERA. This report is part of a project that has received funding by the European Union's Horizon 2020 research and innovation programme under grant agreement number 731166

![](_page_56_Picture_0.jpeg)

![](_page_56_Picture_1.jpeg)

#### Deliverable D.7-3

Results of the vulnerability assessment of the upper aquifer to pollution at pilot areas scale (statistics and sensitivity analysis)

#### PAIRWISE CORRELATION MATRIX

#### Pairwise DRASTIC parameters correlation matrix

The Pairwise correlation matrix measures the strength of the relationship between two variables (i.e. DRASTIC input parameters). Positive values indicates positive linear correlation between two variables, whereas negative values indicates negative linear correlation. The correlation is high if values approach 1.0 and -1.0. NaN values correspond to correlations which one or both variables are constant within the pilot area.

| Pilot Area                | Acronym | Participant | Country | Parameter | D     | R     | Α     | S     | т     | I.    | С    |
|---------------------------|---------|-------------|---------|-----------|-------|-------|-------|-------|-------|-------|------|
| Atalanti alluvial aquifer | ATA     | HSGME       | Greece  | D         | 1,00  |       |       |       |       |       |      |
| Atalanti alluvial aquifer | ATA     | HSGME       | Greece  | R         | NaN   | 1,00  |       |       |       |       |      |
| Atalanti alluvial aquifer | ATA     | HSGME       | Greece  | А         | NaN   | NaN   | 1,00  |       |       |       |      |
| Atalanti alluvial aquifer | ATA     | HSGME       | Greece  | S         | NaN   | NaN   | NaN   | 1,00  |       |       |      |
| Atalanti alluvial aquifer | ATA     | HSGME       | Greece  | Т         | 0,17  | NaN   | NaN   | NaN   | 1,00  |       |      |
| Atalanti alluvial aquifer | ATA     | HSGME       | Greece  | I.        | NaN   | NaN   | NaN   | NaN   | NaN   | 1,00  |      |
| Atalanti alluvial aquifer | ATA     | HSGME       | Greece  | С         | -0,18 | NaN   | NaN   | NaN   | -0,04 | NaN   | 1,00 |
| Boyne                     | BOY     | GSI         | Ireland | D         | 1,00  |       |       |       |       |       |      |
| Boyne                     | BOY     | GSI         | Ireland | R         | 0,06  | 1,00  |       |       |       |       |      |
| Boyne                     | BOY     | GSI         | Ireland | А         | -0,01 | -0,10 | 1,00  |       |       |       |      |
| Boyne                     | BOY     | GSI         | Ireland | S         | 0,07  | -0,15 | 0,12  | 1,00  |       |       |      |
| Boyne                     | BOY     | GSI         | Ireland | т         | 0,07  | -0,07 | 0,24  | 0,02  | 1,00  |       |      |
| Boyne                     | BOY     | GSI         | Ireland | I.        | 0,03  | 0,36  | 0,12  | 0,36  | -0,04 | 1,00  |      |
| Boyne                     | BOY     | GSI         | Ireland | С         | -0,02 | -0,01 | 0,58  | 0,10  | 0,16  | 0,08  | 1,00 |
| Catalunya                 | CAT     | ICGC        | Spain   | D         | 1,00  |       |       |       |       |       |      |
| Catalunya                 | CAT     | ICGC        | Spain   | R         | -0,23 | 1,00  |       |       |       |       |      |
| Catalunya                 | CAT     | ICGC        | Spain   | Α         | 0,08  | 0,26  | 1,00  |       |       |       |      |
| Catalunya                 | CAT     | ICGC        | Spain   | S         | -0,39 | 0,36  | 0,08  | 1,00  |       |       |      |
| Catalunya                 | CAT     | ICGC        | Spain   | Т         | 0,49  | -0,40 | 0,00  | -0,58 | 1,00  |       |      |
| Catalunya                 | CAT     | ICGC        | Spain   | I.        | 0,13  | 0,15  | 0,31  | -0,01 | 0,12  | 1,00  |      |
| Catalunya                 | CAT     | ICGC        | Spain   | С         | 0,26  | 0,01  | 0,44  | -0,18 | 0,26  | 0,30  | 1,00 |
| Cobadin-Mangalia          | COB     | IGR         | Romania | D         | 1,00  |       |       |       |       |       |      |
| Cobadin-Mangalia          | COB     | IGR         | Romania | R         | -0,40 | 1,00  |       |       |       |       |      |
| Cobadin-Mangalia          | COB     | IGR         | Romania | Α         | -0,23 | 0,35  | 1,00  |       |       |       |      |
| Cobadin-Mangalia          | COB     | IGR         | Romania | S         | 0,08  | 0,11  | 0,06  | 1,00  |       |       |      |
| Cobadin-Mangalia          | COB     | IGR         | Romania | Т         | 0,00  | -0,09 | -0,04 | -0,16 | 1,00  |       |      |
| Cobadin-Mangalia          | COB     | IGR         | Romania | I.        | 0,19  | 0,11  | 0,08  | 0,17  | -0,17 | 1,00  |      |
| Cobadin-Mangalia          | COB     | IGR         | Romania | С         | 0,24  | -0,12 | -0,05 | -0,15 | 0,03  | -0,01 | 1,00 |
| Finland                   | FIN     | GTK         | Finland | D         | 1,00  |       |       |       |       |       |      |
| Cialand                   | EINI    | CTV         | Cipland | D         | 0.02  | 1.00  |       |       |       |       |      |

![](_page_56_Picture_9.jpeg)

| - | /            | N             |
|---|--------------|---------------|
| 5 | $\leftarrow$ | $\rightarrow$ |
| 2 | ``           |               |

Pilot area selection

Todas

0

56

![](_page_57_Picture_0.jpeg)

![](_page_57_Picture_1.jpeg)

Deliverable D.7-3 Results of the vulnerability assessment of the upper aquifer to pollution at pilot areas scale (statistics and sensitivity analysis)

### LIST OF AUTHORS

Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) – German Federal Institute for Geosciences and Natural Resources Broda, S., Duscher, K., Günther, A., Reichling, J.

Bureau de Recherches Géologiques et Minières (BRGM) – French Geological Survey Schomburgk, S.

Geologische Bundesanstalt (GBA) – Geological Survey of Austria Schubert, G., Uhmann, A., Bottig, M., Elster, D., Berka, R.

Geološki Zavod Slovenije (GeoZS) – Geological Survey of Slovenia Cerar, S., Meglič, P.

De Nationale Geologiske Undersøgelser for Danmark og Grønland (GEUS) – Geological Survey of Denmark and Greenland Voutchkova, D., Schullehner, J., Hansen, B.

Geological Survey of Ireland (GSI) Hickey, C., Hunter Williams, T., Bishop, H.

Geologian Tutkimuskeskus (GTK) – Geological Survey of Finland Luoma, S., Ikonen, J.

Hellenic Survey of Geology & Mineral Exploration (HSGME) Kontodimos, K., Lappas, I.

Institut Cartogràfic i Geològic de Catalunya (ICGC) – Cartographic and Geological Institute of Catalonia Arnó, G., Conesa, A., Herms, J.I.

Instituto Geológico y Minero de España (IGME) – Geological Survey of Spain Baena-Ruiz, L., Pulido-Velázquez, D.

Institutul Geologic al României (IGR) – Geological Institute of Romania Persa, D., Mercan, A.

Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg (LBGR) – Brandenburg State Office for Mining, Geology and Raw Materials Janetz, S.

Landesamt für Bergbau, Energie und Geologie Niedersachsen (LBEG) - Lower Saxony State Office for Mining, Energy and Geology Witthoeft, M.

Lietuvos Geologijos Tarnyba prie Aplinkos Ministerijos (LGT) Arustienė, J.

Magyar Bányászati és Földtani Szolgálat (MBFSZ) – Mining and Geological Survey of Hungary Gál, N.E.

Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy (PIG-PIB) – Polish Geological Institute - National Research Institute Nidental, M., Jarmułowicz-Siekiera, M.

![](_page_57_Picture_20.jpeg)

 $5 \leftarrow \rightarrow$ 

Copyright © 2021 GROEBA. This report is part of a project that has received funding by the European Union's Horizon 2020 research and innovation programme under grant agreement number 731166

![](_page_57_Picture_23.jpeg)

![](_page_58_Picture_0.jpeg)

![](_page_58_Picture_1.jpeg)

Deliverable D.7-3 Results of the vulnerability assessment of the upper aquifer to pollution at pilot areas scale (statistics and sensitivity analysis)

### REFERENCES

5 <

GeoERA

Adeyinka, S. (2020). Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria. International Journal of Environmental Research and Public Health. MDPI. April 2020. 17 pags. <u>https://doi.org/10.3390/ijerph17072609</u>

Aller, L., Bennett, T., Lehr, J.H., Petty, R.H. & Hackett, G. (1987). DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. - USEPA Report 600/2- 87/035. Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma.

Lodwick, W. A., Monson, W., & Svoboda, L. (1990). Attribute error and sensitivity analysis of map operations in geographical informations systems: suitability analysis. International Journal of Geographical Information System, 4(4), 413-428. https://doi.org/10.1080/02693799008941556

Napolitano, P.; Fabbri, A.G (1996). Single-Parameter Sensitivity Analysis for Aquifer Vulnerability Assessment Using DRASTIC and SINTACS. In Application of Geographic Information Systems in Hydrology and Water Resources Management; Kovar, K., Nachtnebel, H.P., Eds.; IAHS Press: Wallingford, UK, 1996; pp. 559–566.

Vías, J. M., Andreo, B., Perles, M. J., Carrasco, F., Vadillo, I., & Jiménez, P. (2006). Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeology Journal, 14(6), 912-925. <u>https://doi.org/10.1007/s10040-006-0023-6</u>

![](_page_58_Picture_11.jpeg)

![](_page_59_Picture_0.jpeg)

![](_page_59_Picture_1.jpeg)

### APPENDIX D: DRASTIC VULNERABILITY CLASSES DEFINITIONS

| Vulnerability<br>class | Example of definition<br>(Based on Foster et al., 2002 & 2013)                                                                                          | Suggested Action Plan<br>(Based on Büyükdemirci, 2012)                                                                                                                      | Protection measures required /Activities<br>(Based on Foster et al., 2013)                                                                                                                                                               |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Very High              | Indicates that the area is vulnerable to most<br>pollutants, with a relatively rapid impact in<br>many pollution scenarios                              | An immediate action plan is required including<br>above. Any risk containing activity to groundwater<br>is not allowed by the responsible authority                         | Presumption that all potentially polluting<br>activities will be prohibited or only permitted<br>at low intensity with exceptional and<br>expensive containment, detailed monitoring<br>and inspection                                   |
| High                   | Indicates that the area is vulnerable to many<br>pollutants, except those highly adsorbed or<br>immediately transformed, in many pollution<br>scenarios | Need to search for design factors for protecting groundwater. A feasibility plan with on-going monitoring should be considered                                              | Presumption that many potentially polluting<br>activities will be prohibited or subject to<br>detailed controls and considerable additional<br>expense in terms of design, inspection and<br>monitoring                                  |
| Moderate               | Indicates that the area is vulnerable to some<br>pollutants, especially when continuously and<br>widely discharged or leached                           | "Detailed site investigation and monitoring:<br>Requires more detailed site investigation<br>including ongoing monitoring and protection                                    | (Not defined)                                                                                                                                                                                                                            |
| Low                    | Indicates that the area is only vulnerable to<br>conservative pollutants in the long term<br>when continuously and widely discharged or<br>leached      | design factors (e.g., natural attenuation, physical barriers) in addition to requirements above                                                                             | Presumption that most development activities<br>will be permitted and only subject to normal<br>design conditions, except those that involve<br>unlined lagoons or soak away drainage and/or<br>handling groundwater-hazardous chemicals |
| Very low               | Typical of areas with confining beds without significant vertical groundwater flow (leakage)                                                            | Site investigation with monitoring: Requires<br>limited site investigation, groundwater<br>monitoring, testing, and delineation of flow<br>system in addition to desk study | Presumption that all development activities will be allowed and only subject to normal design conditions                                                                                                                                 |

#### **References:**

Büyükdemirci, A. H. (2012). Groundwater vulnerability assessment with DRASTIC method: a case-study on Kırıkkale Plain, Turkey (Master's thesis, Middle East Technical University)

Foster, Stephen & Hirata, Ricardo & Gomes, Daniel & D'Elía, M. & Paris, Marta. (2002). Groundwater Quality Protection A guide for water utilities, municipal authorities and environment agencies. The World Bank.

Foster, S., Hirata, R., & Andreo, B. (2013). The aquifer pollution vulnerability concept: aid or impediment in promoting groundwater protection. Hydrogeology Journal, 21(7), 1389-1392.