

Thermal CO₂-rich water in Bad Krozingen

Water in the spa town Bad Krozingen shows it anomalous character in two aspects: an elevated temperature and enriched CO₂-content.

Anomalies

Water extracted from the Steinmergel Keuper (Thermalhorizont [I], 423 m depth) and the Oberer Muschelkalk (Thermalhorizont [II], 578.5 – 610 m depth) in Bad Krozingen has a temperature between 27.3 and 40.2 °C (Göb et al., 2013; Griesshaber et al., 1992; Kä β and Kä β , 2008). These values exceed the expected value (when assuming a surface temperature of maximum 12 °C and a geothermal gradient of 10 + 30 °C/km) by 10 to 15 °C. In addition, CO₂-concentrations vary between 655 and 2230 mg/l (Göb et al., 2013; Griesshaber et al., 1992; Kä β and Kä β , 2008), significantly higher than the 250 mg/l criterium to be classified as Säuerling (Weertz and Weertz, 2007). The origin of the thermal CO₂-water in Bad Krozingen is found in meteoric water that infiltrates at the west-side of the Black Forest, and is heated up as well as enriched in CO₂ and other elements while journeying through the Keuper and Jura schists in the Oberrhein-valley (Kä β and Kä β , 2008).

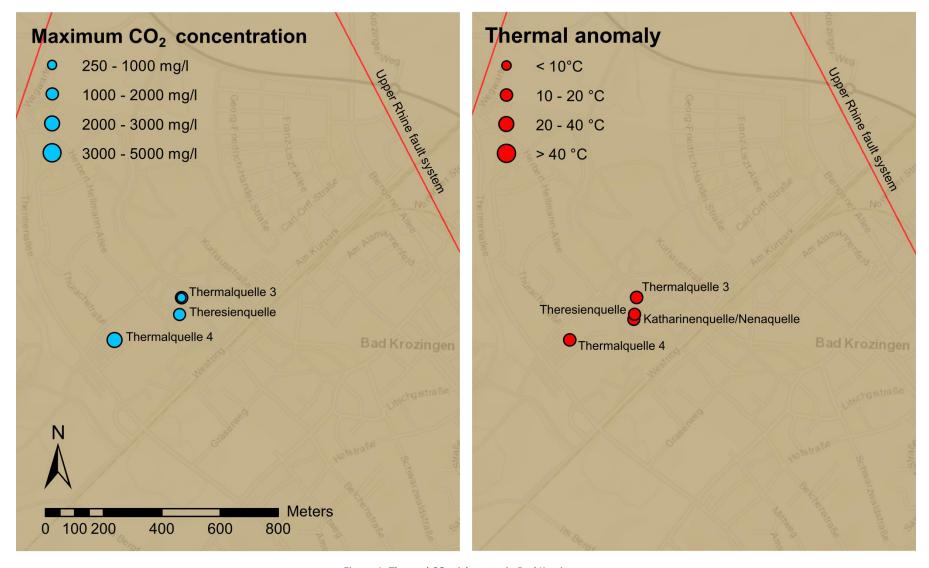


Figure 1: Thermal CO₂-rich water in Bad Krozingen

Data

ID	Coordinates	T	Depth	TDS°	Cl	Na	SO ₄	Free CO ₂	He	³He/⁴He	Analysis	References
		°C	m	g/l	mg/l	mg/l	mg/l	mg/l	ppmv		year	
Katharinenquelle (Nenaquelle) [II]	47°55'07" North 07°41'33" East	40.2	583	4.63							1919	Käβ and Käβ (2008)
Theresienquelle [II]	47°55'07" North 07°41'33" East	38.1	596	4.13				1658			1992	Käβ and Käβ (2008)
Thermalquelle 3 [I]	47°55'09" North 07°41'33" East	27.3	423	7.95 – 8.62	992	1430	2442	655 – 1340			1960	Käβ and Käβ (2008)
Thermalquelle 3 [II]	47°55'09" North 07°41'33" East	39.4	610	4.39	134.4	308	1755	1756			1992	Käβ and Käβ (2008)
Thermalquelle 4 [II]	47°55'04" North 07°41'22" East	37			154	348	1706	2230			<1992	Griesshaber et al. (1992)
										1.73	1992	
		37.5	F70 F	4.34				2208			1993	Käβ and Käβ (2008)
		34.4	578.5	1.9	91.8	307	1770				2013	Göb et al. (2013)

[°] TDS = Total Dissolved Solids

References

Göb, S., Loges, A., Nolde, N., Bau, M., Jacob, D.E., Markl, G., 2013. Major and trace element compositions (including REE) of mineral, thermal, mine and surface waters in SW Germany and implications for water—rock interaction. Applied Geochemistry 33, 127-152.

Griesshaber, E., O'Nions, R.K., Oxburg, E.R., 1992. Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, F.R.G. Chemical Geology 99, 213-235.

Käβ, W., Käβ, H., 2008. Deutsches Baderbuch, 2 ed. Vereinigung für Bäder- und Klimakunde e.V., Stuttgart.

Weertz, J., Weertz, E., 2007. Eifelbronnetjes met een vulkanisch trekje. Grondboor en Hamer 2, 37-41.

Cite this source

Van Daele, J. & Ferket, H., 2021. Thermal CO₂-rich water in Bad Krozingen [Fact sheet]. Flemish Planning Bureau for the Environment and Spatial Development (VPO).