

# GARAH Mid-Term Meeting 5th February 2020, 14.00-16.00 hours

Peter Britze

**GEUS** 

Geological Survey of Denmark and Greenland





# Agenda 1 of 3

- 1. Introduction
  - a. Participants
  - b. Purpose of the GARAH project
  - c. Expected impact
- 2. WP Progress
  - 3. WP2 North Sea HC resource estimations
    - a. Regional:
      - i. Conventional resources
      - ii. Unconventional resources





- b. 3D pilot study
  - i. Conventional resources
  - ii. Unconventional resources
- c. Alternative usages
- 4. WP3 Gas Hydrates in Europe
  - a. Listing content of Europe's Gas Hydrates
  - b. International collaboration
  - c. Building a database
- 5. WP4 GIP
  - a. Establishing technical specifications
  - b. Coordination of the GARAH database and Share Point development



- 6. WP1 Project management
  - a. Finances
  - b. Progress according to time plan / Gant Chart
  - c. Project meetings and internal communications
  - d. Cooperation with 3DGEO-EU, HIKE and GIP
  - e. Dissemination and communication

• 3. General Discussions/Questions/Conclusions





### 1. Introduction

- a. Participants
- b. Purpose of the GARAH project
- c. Expected impact



















## Consortium





# Hydrocarbon assessment

- A harmonized, scientifically based, geological analysis and assessment of conventional and unconventional hydrocarbon resources will help member states to continue the transition to lower Carbon energy sources. This will contribute to climate commitments, and allow the planning for secure sources of affordable energy. The analysis and assessment of hydrocarbons will focus on two areas:
- (i) in Europe's major petroleum province the North Sea a "Geological analysis and resource assessment of North Sea petroleum systems",
- (ii) with a pan-European view, "Hydrate assessment in the European continental margin and related risks".





# **Expected impact**

- The GARAH project idea will result in the identification of new potential areas for hydrocarbon exploration, directly addressing the requirement for identifying secure energy HC sources.
- This will give further information regarding basin development and evolution, and the HC resources will be systematically assessed.
- Outcomes will therefore feed into planning and policy (licensing of areas for exploration) by Member States, commercial exploration strategies and highlight remaining knowledge gaps, which may inform about further academic research or programs of exploration sponsored by member states.
- The generated catalogue of the multiple-use (or sequential-use) potential and impacts of hydrocarbon reservoirs will enable the European community to improve efficient, sustainable, and foster climate friendly use of the subsurface.
- A consistent estimation of hydrocarbon resource will be a first step in assessing and quantifying the hydrocarbon reserves in the main hydrocarbon basin in Europe.
- Our mission is to generate a catalogue of the multiple-use, enabling synergies between various uses and securing a sustainable development, whilst reducing overall climate impact of fossil fuel use.
- The identification of potential hydrate resources in the European margins and provide a unified database and maps detailing potential distribution of gas hydrates (energy source), potential geohazard areas. In addition, we will aim to identify zones could be used to store CO2 as a hydrate (subsurface CO2 storage resource) within the European offshore and onshore areas.
- The results will foster the development of new HC technologies in Europe and will feed into planning, policy (licensing of areas for exploration) by Member States, and commercial exploration strategies.
- The outcomes of this project idea will inform EU Member States of potential frontier plays in a pan-EU perspective, allowing for the currently poorly understood offshore methane hydrate and shale gas/oil resource to be acknowledged in developing legislation and regulation.





## 2. WP Progress

- 3. WP2 North Sea HC resource estimations
  - a. Regional:
    - i. Conventional resources
    - ii. Unconventional resources
  - b. 3D pilot study
    - i. Conventional resources
    - ii. Unconventional resources
  - c. Alternative usages







# Mid Term Progress: WP2 North Sea HC resource estimations: Conventional Resources

Margaret Stewart, Susanne Nelskamp





| Task                                                                                             | Progress |
|--------------------------------------------------------------------------------------------------|----------|
| Creation and Dissemination of conventional resource questionnaires                               | Complete |
| Creation and Dissemination of conventional resource spreadsheet to capture data                  | Complete |
| Contribution to and completion of data reporting                                                 | Complete |
| Definition of conventional data/deliverables to be gathered and availability of data across team | Complete |
| Collation of agreed data                                                                         | Ongoing  |
| Creation and consolidation of GIS layers                                                         | Ongoing  |





### **Questionnaires and Spreadsheets**

### **CAPTURE:**

- Summary of exploration history, main plays, current methods for resource assessments across borders
- Quantitative descriptions of reserves, resources, yet to find all in same units
- Summary of play types across borders reservoir, source, seal
- List of exploration wells for each country from 2000 name, location, company, dates drilled and completed, target formation if possible.





**Questionnaires** returned by January 2020 – variable detail but all completed

### 3. Summary of Play Types

a) List the main play types in your country's North \$ based on: play type status (proven, conceptual etc present (i.e. heavy oil, dry gas etc); main source(s) (including age and lithology); trap type (structural geographic location (e.g. Viking Graben, Broad Fol

See spread sheet tab: Norwegian NSea well activitie

b) For your country, summarise which play types have underexplored, and which are most promising for fut

Most successful: Cretaceous Chalk and Jurassic Sandsto Most Promising: Late Triassic to Early Jurassic Sandston

### 4. Exploration History

- a) From the year 2003 (by end of drilling), list all publicall the spreadsheet. Include details of: TD; Water Depth; x
- b) Do you have further released well information relating to target lithology or reservoir; target play type; result (i.e. d etc). If so, is it possible to compile this information for the below what may be available and how long it would take t

All this is published on the NPD webside.

## Questionnaire - GARAH Conventional Resource Assessments

This questionnaire is intended to assess the data availability in your country related to conventional oil and gas tims quesiminanc is interiors to assess uncome arguments, in your country control of the courses in the North Sea study area. The aim of the GARAH project is to assess cross-border resources, and our approach here is not only to compare existing reporting on resource assessment, but also to compare nethodologies. Initially, we are interested in existing assessments of conventional resources and associated nethodologies and existing assessments of potential resources, such as yet to find, and associated nethodologies. We will then take a play-based approach to collate information on conventional petroleum systems across the North Sea, and compare exploration data to see if further insight can be made regarding particular plays and regions of exploration interest.

Note: All geographic data should be supplied in ED50 31 or ETRS89-LAEA format Note: All references should be in Geological Society of London format

Name of your geological survey British Geological Survey

1. State-of-the-art of conventional hydrocarbons in the North Sea offshore. For your country, Please provide a brief overview of the current situation with regards to oil and gas exploration and production, for example: current licensing activities; planned or recent exploration activities; эдиманов авы ргонослон, доссманирие, совтень посимые асцупнесь рышко от тесен сариманов всего elinquishments; production forecasts/numbers; government priorities and policy. List relevant overview

Offshore oil and gas exploration in the UK sector of the North Sea has been ongoing since the 1960's. The Ollshore on any gas expiration in the UK sector of the North Sea has been ongoing since the 1900 oil and gas industry is regulated by the Oil and Gas Authority (OGA), part of the UK Government publications. on any gas mousely is regulated by the On any Gas Authority (OGA), part of the UK Government for Business, Energy, and Industrial Strategy (BEIS). The OGA regulates, promotes and Department for Dustiness, Energy, and industrial Strategy (DEIS). The OOA regulates, promotes and influences the oil and gas industry in order to maximise economic recovery of oil and gas from the UK. The influences the oil and gas industry in order to maximise according to the order of the minutives the out and gas moustry in order to maximise economic recovery or out and gas from GGA published an updated exploration strategy in 2016, which is publically available here: https://www.ogauthority.co.uk/media/2835/exploration\_strategy\_master.pdf

The OGA published an updated overview of their work in 2018: https://www.ogauthority.co.uk/media/5063/oga\_overview\_sept.pdf

Oil and gas production from the UK North Sea peaked in 1999, and the OGA reports 42.3 billion barrels of On and gas production from the UK North Sea peaked in 1979, and the UGA teports 44.5 billion oariets of oil equivalent (boe) total hydrocarbons produced since 1975 (last updated October 2018). Of this, 39 bn boe ou equivalent (1982) total mydrocaroons produced since 1975 (last updated October 2016). Of titls, of hydrocarbons have been produced from the North Sea area - 92% of total production. The last or nyurocaroons have oven produced from the North Sea area - 92% or total production. The last compilation of OGA reporting, from 2018, calculated 1.63 million bee/day was produced in 2017, similar to the figure in 2016. Up to date production information can be found and queried here:





| מו מווע וזעו | uieiii r | vorui Sed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quaternary       | Conceptual | Basin          |                                     |                  |                                         |                                     |            |                             |
|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|----------------|-------------------------------------|------------------|-----------------------------------------|-------------------------------------|------------|-----------------------------|
| 1            | F        | OSt-Encelle biggs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pliocene         | Proven     | Basin          | ypes in Danish Central Graben Area  |                  |                                         |                                     |            |                             |
| 2            | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oligo-Miocene    | Conceptual | Basin          |                                     | Play type status | Play type stru                          | Play location T                     | ab clbc    | Reservoir name              |
| 3            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Alba             | Proven     | Basin          | ype name                            |                  | Platform                                | Danish Central Graben S             | tructural  | Bryne and Lulu fms          |
| 4            |          | 180-139 Eocene braza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tay              | Proven     | Basin          | urassic sandstone                   | Horen            | Platform                                |                                     | tructural  | Heno Fm                     |
| 5            |          | A STATE OF S | Frigg            | Mature     | Basin          | r Jurassic Sandstone                | INCH             | Platform                                |                                     | tructural  | Outer Rough Sand            |
| 6            | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Balder           | Proven     | Basin          | r Jurassic Sandstone                | Conceptati       | 7 1011111111111111111111111111111111111 |                                     | Structural | Gita Sand                   |
| 7            |          | Progradational shelfalfdeltaic sands and small,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ninian           | Proven     | Basin          | Farsund Fm Sandstone                | 11011            | Basin                                   |                                     | Structural | Poul Sand, Vyl Fm           |
| 8            | 2        | localised basinal fans in 4-way compaction drapes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sele             | Proven     | Basin          | r Farsund Fm Sandstone              | Contraction      | Basin                                   | Danish Central Graden               | Structural | Tuxen and Sola fms          |
|              | 2        | Incl. Balder/Sele/Dornoch/Beauly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Teal-Heimdal     | Proven     | Basin          | r Cretaceous Chalk                  | Proven           | High                                    | Danish Central Grades.              | Structural | Hidra and Hod fms           |
| 10           | -        | T40 Forties play: Aggradational fan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Forties          | Mature     | Basin          | and Hod Chalk                       | Conceptual       | High                                    | Dallisti Celitiai Giubeti           | Both       | Ekofisk - Tor Fm            |
| 11           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mey              | Mature     | Basin          | nd Ekofisk Chalk                    | Mature           | High                                    | Danish Central Graben               |            | Solsort, Siri, Rau, Nini sa |
| 12           |          | Extensive submarine fan systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maureen          | Mature     | Basin          |                                     | Mature           | Platform                                | Siri Canyon                         | Structural | Francisca sand              |
| 13           |          | Incl. Balmoral/Andrew/Heimdal/Maureen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ivlaureen        |            | D. 15          | )gene sandstone                     | Conceptual       | Platform                                | North Sea                           | Structural | Lille John Sand             |
|              |          | Upper Cretaceous plag: Reworked chalk in structural traps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chalk            | Proven     | Basin<br>Basin | ogene sandstone                     | New              | High                                    | Danish Central Graben               | Structural |                             |
| 14           |          | Lower Cretaceous plats:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kopervik         | Mature     | Basin          | ene sandstone                       | Conceptual       | Basin                                   | Danish Central Graben               | Structural | Lark Fm                     |
| 15           |          | End syn-rift and early post-rift deposition of deep-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DevilsHole-Scapa | Mature     | Basin          | Fm                                  | Conceptual       | High                                    | Ringkøbing-Fyn High, Horn Graben    | Structural | Rotliegend Sandstone        |
| 16           |          | water slope apron/basin floor fans in<br>stratigraphic/combination traps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lower_Cretaceous | Conceptual | Basin          | egend Sandstone                     | Conceptual       | High                                    | Ringkøbing-Fyn High, Horn Graben    | Structural | Zechstein Carbonate         |
|              |          | Upper Jurassic plays:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Brae-Kimmeridge  | Mature     | Basin          | stein Carbonate                     | Conceptual       | High                                    | Ringkøbing-Fyn High, Horn Graben    | Structural | Bunter Fm                   |
| 18           |          | Shallow marine/shelf sandstones around basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Kimmeridge       | Mature     | Basin          | sic Sandstone                       | Conceptual       | High                                    | Danish North Sea, S of Farsund Basi | Structural | Rhaetian-Jurassic San       |
| 19<br>20     | Ť        | in (Eulmar Hugin Piper)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Magnus           | Mature     | Basin          | sic sandstone                       |                  | High                                    | Ringkøbing-Fyn High, Horn Graben    |            | Ekofisk - Tor Fm            |
| 21           | Š        | Deep-marine submarine fan sandstones (Magnus,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ainess           |            | Basin          | sk - Tor Fm                         | Conceptual       |                                         | North Sea                           | Both       |                             |
| 22           |          | Brae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fulmar           | Mature     | Basin          | eogene-Neogene Sandstone - biogenic | Conceptual       | High                                    | NOTAL SEC                           |            |                             |
| 23           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heather          | Mature     | Parin          | 200                                 |                  |                                         |                                     |            |                             |

Spreadsheets returned by January 2020 – variable detail but all completed

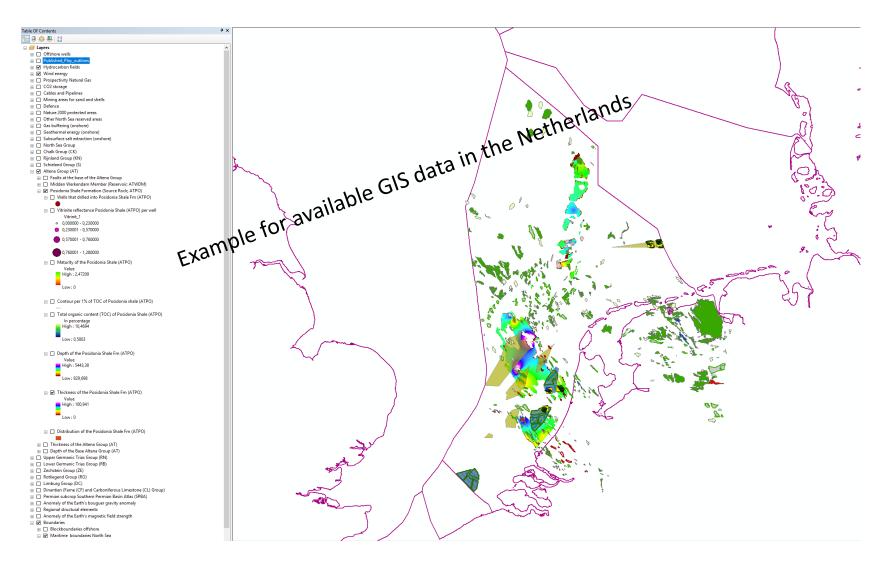




|                       | Conventional parameters                             |            | Available   |          |           |            |             |             |               |             |               |         |
|-----------------------|-----------------------------------------------------|------------|-------------|----------|-----------|------------|-------------|-------------|---------------|-------------|---------------|---------|
|                       |                                                     | Agree      | UK          | Denmark  | Norway    | Netherlan  | Germany     | Comment     | s             |             |               |         |
| Clastic               | Shallow reservoirs (less than 1.5km)                | yes        | yes but no  | yes      | yes       | yes but no | no          |             |               |             |               |         |
|                       | Bright spots'                                       | yes        | no          | yes      | ?         | yes        | yes         |             |               |             |               |         |
|                       | HPHT                                                | yes        | yes         | yes      | yes       | ?          | no          | what is th  | e definitio   | n - 150C;   | 70MPascal.    | . Nee   |
|                       | High permeability                                   | no, becau  | se not prac | tical    |           |            |             |             |               |             |               |         |
|                       | Low perm (tight)                                    | no, becau  | se not prac | tical    |           |            |             | there may   | be opport     | tunities to | highligh in   | ı ta re |
|                       | basement and compare to onshore analogues           | yes        | yes but no  | to compa | onshore a | ? Elbow sp | ? Can take  | a look - c  | entral grab   | en should   | er            |         |
| both carbonate and cl | geothermal                                          | yes        | yes         | yes      | yes       | yes        | yes         | can do wi   | th analogu    | es onshor   | e -           |         |
| both carbonate and cl | energy storage                                      | yes        | yes         | yes      | yes       | yes        | yes         | also requi  | ires link to  | other wo    | rks etc.      |         |
| both carbonate and cl | CCS                                                 | yes        | yes         | yes      | yes       | yes        | yes         | link to otl | ner studies   | and regio   | ns that ma    | y be    |
|                       | stratigraphic intervals                             | yes        | yes         | yes      | yes       | yes        | yes         | use existi  | ng maps/o     | utlines for | r main rese   | rvoirs  |
|                       | infrastructure - platforms, pipelines, depleted fi  | yes        | yes         | yes      | yes       | yes        | ? Need to   | Does the    | SPBA have     | this? Mill  | enium Atla    | s. No   |
| Source                | principle defined source rocks - distribution (i.e. | yes        | yes         | yes      | we need t | yes        | yes for dis | this depe   | nds on tim    | e/effort/i  | use to EU et  | tc.ho   |
|                       | coals                                               |            | yes         | yes      | yes       | yes        | yes         | this is def | inite (as wo  | on't be co  | vered in un   | iconv   |
|                       |                                                     |            |             |          |           |            |             |             |               |             |               |         |
| Carbonate             | existing and potential                              |            |             |          |           |            |             |             |               |             |               |         |
|                       | porosity and permeability                           |            |             |          |           |            |             |             |               |             |               |         |
|                       |                                                     |            |             |          |           |            |             |             |               |             |               |         |
|                       |                                                     |            |             |          |           |            |             |             |               |             |               |         |
|                       | Cretaceous - strat interval same as clastics        | yes to all |             |          |           |            |             | For all of  | these it is o | ompliatio   | on of existin | ng stu  |
|                       | Dinantian- strat interval                           |            |             |          |           |            |             | <u> </u>    |               |             |               |         |
|                       | Zechstein - strat interval                          |            |             |          |           |            |             |             |               |             |               |         |
|                       | fractured vs. secondary/primary porosity in cha     | lk fields  | ?find out   | yes      |           | yes        |             |             |               |             |               |         |
|                       | salt and salt structures                            |            | yes         | yes      | ves       | yes        | yes         | this is ser | tainly in sp  | ho oto      |               |         |

### October/November 2019 – definition of data to be collected - complete






| Country | Assessment                  | Type of setting                       | Assessment class                  | Parameter                         | Data type available                         |
|---------|-----------------------------|---------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------|
| NL      | Conventional/multiple use   | Clastic/carbonates/CCS/Energy storage | Reserves and contingent resources | HC Fields                         | polygon shape file                          |
| NL      | Conventional                | Clastic/carbonates                    | Resources                         | Reservoir distribution            | polygon outlines and depth/thickness grids  |
| NL      | Conventional                | Shallow gas                           | Resources/conceptual              | Bright spot mapping               | polygon outlines                            |
| NL      | Conventional                | Shallow gas                           | Resources/conceptual              | Chimneys                          | ?                                           |
| NL      | Conventional                | Shallow gas                           | Resources/conceptual              | Shallow reservoirs                | ?                                           |
| NL      | Conventional                | НРНТ                                  | Resources                         | Overpressure distribution         | Point map                                   |
| NL      | all                         | HPHT/Geothermal potential/Unconventi  | i Resources                       | Temperature maps                  | most likely grids for different depth?      |
| NL      | all                         | HPHT/Geothermal potential/Unconventi  | Resources                         | Heat flow map                     | either grid or point data                   |
| NL      | Conventional                | Basement play                         | conceptual                        | Basement highs                    | distribution polygons                       |
| NL      | Multiple use                | Energy storage                        | conceptual                        | Salt diapirs                      | polygon shape file/depth and thickness grid |
| NL      | Conventional                | Source                                | Resources                         | Coals                             | Distribution of carboniferous coal measures |
| NL      | Conventional                | Source                                | Resources                         | Base Permian Subcrop map          | Polygon outlines, e.g. SPBA                 |
| NL      | Conventional/Unconventional | Source                                | Resources/conceptual              | Posidonia shale                   | Thickness, Depth, Maturity, and TOC grids   |
| NL      | Conventional/Unconventional | Source                                | Conceptual                        | Geverik shale                     | Depth and maturity grids                    |
| NL      | all                         | all                                   | Reserves and contingent resources | wells                             | point data                                  |
| NL      | Multiple use                | Energy storage/CCS                    | conceptual                        | Infrastructure                    | shape files                                 |
| NL      | all                         | all                                   | conceptual                        | Major structures                  | polygon shape file                          |
| NL      | Multiple use                | CCS/Geothermal potential              | conceptual                        | Aquifers                          | maybe poro/perm model                       |
| NL      | Conventional                | Carbonates                            | Reserves and contingent resources | Type of reservoir (fractures/prin | n/a                                         |
| NL      | Conventional                | Carbonates                            | Resources                         | Zechstein Carbonate disctribution | ?                                           |
| NL      | all                         | all                                   | Reserves and contingent resources | Water depth                       | ?                                           |
| NL      | Unconventional              | source                                | conceptual                        | pressure                          | hydrostatic pressure gradient               |
|         |                             |                                       |                                   |                                   |                                             |
|         |                             |                                       |                                   |                                   |                                             |

Assessment of data available for GIS – ongoing – TNO have made most progress – results on One Drive.











| Task                                                                                             | Progress |
|--------------------------------------------------------------------------------------------------|----------|
| Creation and Dissemination of conventional resource questionnaires                               | Complete |
| Creation and Dissemination of conventional resource spreadsheet to capture data                  | Complete |
| Contribution to and completion of data reporting                                                 | Complete |
| Definition of conventional data/deliverables to be gathered and availability of data across team | Complete |
| Collation of agreed data                                                                         | Ongoing  |
| Creation and consolidation of GIS layers                                                         | Ongoing  |

### Next Steps:

- Continued collation of GIS layers
- Decide on internal deadline for final delivery of layers
- Collation and decision on if/how resource assessment to be finalised
- Reporting





# Mid Term Progress: WP2 North Sea HC resource estimations Regional: Unconventional resources

Niels Schovsbo, Peter Britze



- 1. Shale resource Screening criteria defined
- 2. Resource model and Approach defined
- 3. Screening of North Sea area made
- 4. Data Gathering and GIS model in progress
- 5. Resource assessment, Pending





# Shale resource screening

- We have applied commonly accepted criteria for selecting potential shale units and to focus our affords on regional important units.
- Screening include both data and descriptions following

### Reference:

 Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET.

### Applied screening criteria

| Geological Properties:   | Value/comment          |
|--------------------------|------------------------|
| TOC content and type     | > 2%, Type I-II marine |
| Thermal maturity         | >0.7% Ro, oil mature   |
| Thickness                | >20 m                  |
| Present day depth        | < 7 km                 |
| Mineralogy               | Brittle preferentially |
| Pressure regime          | Normal to overpressure |
| Structural complexity    | Low to moderate        |
| Geographical Properties: |                        |
| Areal distribution       | Offshore               |





# Results -Screening

| Unconventional st | atus January 202        | 20                                            |                                                        |                                                                             |                                        |                                             |                                                                                                                                                  |
|-------------------|-------------------------|-----------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Country           | Questionnaire Complete? | Spreadsheet Complete?                         | Assessment, Offshore                                   | Plays, offshore                                                             | Comments on<br>Questionnaire           | Comments on<br>Spreadsheet                  | Comments/questions on data                                                                                                                       |
| Netherlands       | Not made                | yes                                           | None for unconventional appears available              | Carboniferous & L. Jurassic                                                 | Questionnaire completed                | Critical parameters present for two shales  | maturity grids delivered                                                                                                                         |
| UK                | 100%                    | EUOGA values used                             | none available for offshore,<br>Onshore plays assessed | Mid Carboniferous &<br>Jurassic extension from<br>onshore to offshore areas | Questionnaire<br>completed             | Suggested to use the                        | Is map data in GIS relevant for defining play, Volumes available?                                                                                |
| Denmark (GEUS)    | 100%                    | Yes                                           | Assessment of Alum Shale and methods to be detailed    | Ithe Farsund Fm) and Lower                                                  | Geological<br>development<br>described | Critical parameters present for four shales | Maps as GIS polygons to define<br>Volume and maturity for<br>Farsund not present. SPBA and<br>Millennium Atlas available.<br>Well data delivered |
| Norway (GEUS)     | Not made                | Analogue values used for neibouring countries | None for unconventional                                | Upper Jurassic: fms                                                         | no                                     |                                             | Only regional data such as the<br>Millennium and SPBA Atlas<br>available. Well data delivered                                                    |
| Germany           | 100%                    | Yes                                           | None for unconventional                                | Triassic and lower /upper<br>Jurassic                                       | Questionnaire completed                | Inresent for three shales                   | Polygons for shales delivered.<br>Well data delivered                                                                                            |

Results of screening – data and descriptions





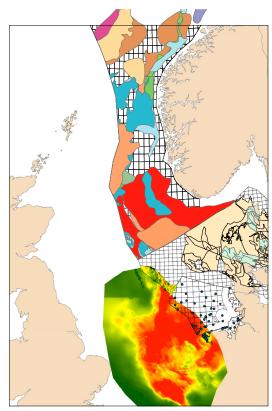
# 13 shales identified

| Screening | CD CADAU        | CD FUOCA                        | CD al in          | D        |                    |                      |                  |                                                   |                              |               |                                | Darder de contratte o |      | Area (GIS)              |                      |                       |
|-----------|-----------------|---------------------------------|-------------------|----------|--------------------|----------------------|------------------|---------------------------------------------------|------------------------------|---------------|--------------------------------|-----------------------|------|-------------------------|----------------------|-----------------------|
| (CP)      | CP GARAH        | CP EUOGA                        | CP used in        | Basin    | Play ID            | Daain                | Canneniae        | Chala/a)                                          |                              | N. A          | Frankanskina                   | Basin description     |      | analysis                | Nam namanina         | Damanla               |
| index     | Equivalent      | equivalent                      | assessment        |          |                    | Basin                | Countries        | Shale(s)                                          | Age                          | iviaturity    | Exploration                    | report                | Maps | preformed of            | Map remarks          | Remarks               |
| Thermoge  | nic oil and g   | as unconvei                     | ntional shale ba  | sins: Da | ata and n          | naps are s           | ufficiently de   | fined for shales to b                             | e assessed                   |               |                                |                       |      |                         |                      |                       |
|           |                 |                                 |                   |          | DK_NS_Ca           |                      |                  |                                                   | Cambrian -                   |               | No -Explored                   |                       |      | Volume from             |                      |                       |
| 3001      | none            | 2001                            | 3001              | G1       | Or_Alum            | North Sea            | Dk               | Alum Shale                                        | Ordovician                   | Gas           | Onshore (T1)                   | yes                   | yes  | polygons                | yes                  | available             |
|           |                 |                                 |                   |          | DK_CG_UJ           | DK Central           |                  |                                                   | U Jurassic - L               |               |                                |                       |      | Volume from 3D          | part of 3D           | awaits final          |
| 3002      | 3008            | none                            | 3002              | G2       | C_Bo               | Graben               | Dk               | Bo Member, Farsund Fm                             | Cretaceous                   | Oil           | Yes - preliminary              | yes                   | yes  | model                   | GeoERA               | model                 |
|           |                 |                                 |                   |          |                    |                      |                  |                                                   |                              |               |                                |                       |      |                         |                      |                       |
| 3003      | 3005            | none                            | 3003              | G2       | DK_CG_UJ<br>C Fars | DK Central<br>Graben | Dk               | Farsund Fm                                        | U Jurassic - L<br>Cretaceous | Oil           | Yes - preliminary              | yes                   | ves  | Volume from 3D<br>model | part of 3D<br>GeoERA | awaits final<br>model |
| 3003      | 3003            | none                            | 3003              | UZ.      | D CG Rh            | D Central            | DK               | T di Sulla T III                                  | Cretaceous                   | Oli           | res - premimary                | yes                   | yes  | Volume from 3D          | part of 3D           | awaits final          |
| 3006      | none            | none                            | 3006              | G3       | Sleen              | Graben               | D                | Sleen Fm                                          | Rhaet-Trias                  | Oil           | No                             | yes                   | yes  | model                   | GeoERA               | model                 |
|           |                 |                                 |                   |          | D_CG_LJ_P          | D Central            |                  |                                                   |                              |               | No -Explored                   | ·                     |      | Volume from 3D          | part of 3D           | awaits final          |
| 3007      | 3004, 3010      | 2012                            | 3007              | G3       | os                 | Graben               | D                | Posidonia Shale                                   | L Jurassic                   | Oil           | Onshore (T25c)                 | yes                   | yes  | model                   | GeoERA               | model                 |
|           |                 |                                 |                   |          | D CG UJ            | D Central            |                  |                                                   | U Jurassic - L               |               |                                |                       |      | Volume from 3D          | part of 3D           | awaits final          |
| 3008      | 3002            | none                            | 3008              | G3       | Not                | Graben               | D                | Hot Shale                                         | Cretaceous                   | Oil           | No                             | yes                   | yes  | model                   | GeoERA               | model                 |
|           |                 |                                 |                   |          | NL_CG_Mi           | NL Central           |                  |                                                   |                              |               | No -Explored                   |                       |      | Volume from 3D          | part of 3D           | awaits final          |
| 3009      | none            | 1064, 2013                      | 3009              | G4       | s_Gev              | Graben               | NI               | Geverik Member                                    | Missisipian                  | Oil - gas (?) | Onshore (T10a)                 | yes                   | yes  | model                   | GeoERA               | model                 |
|           |                 |                                 |                   |          | NL_CG_LJ_          | NL Central           |                  |                                                   |                              |               | No -Explored                   |                       |      | Volume from 3D          | part of 3D           | awaits final          |
| 3010      | 3004, 3007      | 1065                            | 3010              | G4       | Pos                | Graben               | NI               | Posidonia Shale                                   | L Jurassic                   | Oil           | Onshore (T25a)                 | yes                   | yes  | model                   | GeoERA               | model                 |
| Thermoger | nic oil and gas | unconventio                     | nal shale basins: | Uncerta  | ain to wha         | t degree d           | ata exist for th | e shales to be assesse                            | ed with reason               | able level o  | f certainty                    |                       |      |                         |                      |                       |
|           |                 |                                 |                   |          | DK_NS_LJ_          | DK Central           |                  |                                                   |                              |               |                                |                       |      | Volume from 3D          | Part of 3D           | Await final           |
| 3004      | 3007, 3010      | none                            | 3004              | G2       | Fjer               | Graben               | DK               |                                                   | L Jurassic                   | gas           | no                             | yes                   | no   | model                   | GeoERA               | model                 |
|           |                 |                                 |                   |          | N CG UJC           | N Central            |                  |                                                   | U Jurassic - L               |               |                                |                       |      | Volume from             | Maps Millenium       | Ongoing               |
| 3005      | 3003            | none                            | 3003              | G5       | XX XX              | Graben               | N                |                                                   | Cretaceous                   | gas-oil       | no                             | no                    | yes  | polygons                | Atlas                | digitalisation        |
|           |                 |                                 |                   |          | N_NS_UJC           |                      |                  |                                                   | U Jurassic - L               | 0             |                                |                       | ,    | Volume from             | Maps Millenium       | Ongoing               |
| 3005      | 3003            | none                            | 3003              | G6       | _XX                | N_Mid                | N                |                                                   | Cretaceous                   | gas-oil       | no                             | no                    | yes  | polygons                | Atlas                | digitalisation        |
|           |                 |                                 |                   |          | N_NS_UJC           |                      |                  |                                                   | U Jurassic - L               |               |                                |                       |      | Volume from             | Maps Millenium       | Ongoing               |
| 3005      | 3003            | none                            | 3003              | G7       | _XX                | N_North              | N                |                                                   | Cretaceous                   | gas-oil       | no                             | no                    | yes  | polygons                | Atlas                | digitalisation        |
| 2014      |                 | 1071, 1072,                     | 1077              | 60       | UK_Pen_C           | LIK Danai            | 1.02             | Davidson d Usadel                                 | M.C. ub a wife               | C             | No -Explored                   |                       |      | Volume from             |                      | Chatana               |
| 3011      |                 | 1073, 1077, 1079                | 1077              | G8       | ar_XX              | UK_Pennine           | UK               | Bowland-Hodder                                    | M Carboniferous              | Gas           | Onshore (T10b)                 | yes                   |      | polygons                |                      | Status unknown        |
|           |                 |                                 |                   |          | UK Mid C           | UK Midland           |                  | Lmst Coal, Lower Lmst,<br>West Lothian Oil Shale, |                              |               | No -Explored                   |                       |      | Volume from             |                      |                       |
| 3012      |                 | 1079                            | 1079              | G9       | ar_XX              | Valley               | UK               | Gullane fms                                       | M Carboniferous              | Gas           | Onshore (T26)                  | yes                   |      | polygons                |                      | Status unknown        |
|           |                 |                                 |                   |          |                    |                      |                  | Kimmeridge Clay, Coralian                         |                              |               |                                |                       |      |                         |                      |                       |
|           |                 |                                 |                   |          |                    |                      |                  | Clay, Oxford Clay, Upper                          |                              |               |                                |                       |      |                         |                      |                       |
| 3013      |                 | 1070, 1074,<br>1075, 1076, 1078 | 1070              | G10      | UK_Weald<br>Jou XX | UK Weald             | UK               | Lias Clay, Mid Lias Clay,<br>Lower Lias Clay      | Jurassic                     | gas-oil       | No -Explored<br>Onshore (T25d) | Ves                   |      | Volume from<br>polygons |                      | Status unknown        |
| 3013      |                 | 1073, 1070, 1078                | 10/0              | 910      | _J0u_xx            | ok_weald             | UK               | LOWER LIAS CIAY                                   | Julassic                     | gas-uii       | Onstiole (1250)                | yes                   |      | polygons                |                      |                       |





- parameters related to Gas, oil saturation, source quality and mineralogy has been gathered to the best extend of data.
- A full reference list covering all used literature used is provided


| GARAH Critical Screening Parameters                             |        |          |          |              | Source<br>(Ref.list) | Comments                   | <u>3001</u>                                                                                                            |
|-----------------------------------------------------------------|--------|----------|----------|--------------|----------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------|
| Shale Name:                                                     | Alum S | haleForr | nation   |              |                      |                            | REFERENCE LIST:                                                                                                        |
| Country:                                                        |        |          | Denmar   | k            |                      | ]                          | 1 . Nielsen, A.T. & Schovsbo, N.H. 2007.                                                                               |
| Age (Age):                                                      | -      |          |          |              | -                    | Middle Cambrian to Lower   | Cambrian to basal Ordovician<br>lithostratigraphy in southern Scandinavia.                                             |
| Age (Epoch):                                                    |        |          | Furongia | n            | 1                    | Ordovician                 | Bulletin of the Geological Society of                                                                                  |
| Basin:                                                          |        |          | North Se | :8           | 2                    |                            | Denmark 53, 47–92.                                                                                                     |
|                                                                 |        |          |          |              |                      |                            | 2. Schovsbo, N.H., Nielsen, A.T. & Gautier,                                                                            |
| Chance of success parameters                                    |        |          |          |              | Source<br>(Ref.list) | Comments                   | D.L. 2014. The Lower Palaeozoic shale gas                                                                              |
| Mapping status                                                  |        |          | Moderat  |              | 2                    |                            | play in Denmark. Geological Survey of<br>Denmark and Greenland Bulletin 31, 19—                                        |
| Sedimentary variability                                         | _      |          | Low      | e            | 1                    | 1                          | 22.                                                                                                                    |
| Structural complexity                                           | _      |          | Moderat  |              | 2                    | 1                          |                                                                                                                        |
|                                                                 | -      |          |          | e            |                      | 1                          | <ol> <li>Gautier, D.L., Schovsbo, N.H. &amp; Nielsen,<br/>A.T. 2014. Resource potential of the Alum</li> </ol>         |
| Available HC data                                               | -      |          | Paar     |              | 3                    | Proven SR in Baltic Basin  | Shale in Denmark. Unconventional                                                                                       |
| Proven source rock                                              |        |          | Possible |              | 8                    | only                       | Resources Technology Conference (URTeC)<br>SPE-2014-1931754-MS. DOI                                                    |
| Maturity variability                                            |        |          | Moderat  | ie.          | 2                    | 1                          | 10.15530/urtec-2014-1931754, 10 pp.                                                                                    |
| Depth                                                           |        |          | Average  |              | 2                    | 1                          |                                                                                                                        |
| Mineral composition                                             |        |          | Unknow   |              |                      | no data for North Sea      | <ol> <li>Fabricius, I., Haugwitz, C., Larsen. P.B. &amp;<br/>Schovsbo, N.H. 2017. Elasticity and density</li> </ol>    |
| ·                                                               |        |          |          |              |                      | 1                          | of Paleozoic shales from Bornholm, 6th Bio                                                                             |
|                                                                 |        |          |          |              | Source               |                            | Conference on Poromechanics, Extended                                                                                  |
| Detailed parameter list                                         | Min    | Max      | Mean     | Distribution | (Ref.list)           | Comments                   | abstract 1–7,<br>Sciencesconf.org:biot2017:131766                                                                      |
|                                                                 |        |          |          |              |                      | Distribution maps provided |                                                                                                                        |
| 1. Area (km2)                                                   |        |          |          |              | 2                    | via EUOGA project          | <ol> <li>Gasparik, M., Bertier, P., Gensterblum,</li> <li>Y., Ghanizadeh, A., Kropss, B.M. &amp; Littke, P.</li> </ol> |
|                                                                 |        |          |          |              |                      |                            | 2014. Geological controls on themethane                                                                                |
|                                                                 |        |          |          |              |                      | Distribution maps provided | storage capacity in organic-rich shale.                                                                                |
| 2. Thickness (grass, m)                                         | 20     | 180      | 80       | Triangular   | 2                    | via EUOGA project          | International Journal of Coal Geology 123,<br>34-51                                                                    |
| 2a. Thickness (net, m)                                          | 20     | 150      | 75       | Triangular   | 2                    |                            |                                                                                                                        |
| 2b. Net/Gross (%)                                               | 85     | 100      | 90       | Triangular   | 2                    |                            | 6. Ghanizadeh, A. Gasparik, M., Amann-                                                                                 |
|                                                                 |        |          |          |              | +                    |                            | Hildenbrand, M., Gensterblum, Y. & Kroos<br>B.M. 2014. Experimental study of fluid                                     |
|                                                                 |        |          |          |              |                      | Distribution maps provided | transport processes in the matrix system of                                                                            |
| 3. Depth (m)                                                    | 1500   | 7000     | 4.000    | Triangular   | 2                    | via EUOGA project          | the European organic-rich shales: I.                                                                                   |
|                                                                 | 2,3    | 2.6      |          | Triangular   | 4                    |                            | Scandinavian Alum Shale, Marine and<br>Petroleum Geology 51, 79-99.                                                    |
| 4. Density (g/cm3)                                              | 2,3    | 2,5      | 2,45     | i nangular   | - 4                  |                            |                                                                                                                        |
|                                                                 |        |          |          |              |                      |                            | <ol> <li>Pedersen, G.K. 1989: The sedimentology<br/>of Lower Palaeozoic black shales from the</li> </ol>               |
| a contractor                                                    |        |          | 571      |              |                      | Distribution maps provided | shallow wells Skelbro 1 and Billegray 1,                                                                               |
| 5. TOC (%)                                                      | 0      | 17       | 9        | Triangular   | 3                    | via EUOGA project          | Bornholm, Denmark.                                                                                                     |
| 6. Porosity (%)                                                 | 4      | 12       | 7        | Triangular   | 11                   | correlate with TOC         | Bulletin of the Geological Society of<br>Denmark 37, 151–173.                                                          |
|                                                                 |        |          |          |              |                      |                            |                                                                                                                        |
|                                                                 |        |          |          |              |                      | Distribution maps provided | 8. Yang, S., Schulz, HM. Schovsbo, N.H. &                                                                              |
| 7. Maturity (%VR) or graptolite equivalent                      | 1,8    | 3        | 2.5      | Triangular   | 2. 10                | via EUOGA project          | Bojesen-Koefoed, J.A. 2017. Oil-source ros<br>correlation of the Lower Palaeozoic                                      |
|                                                                 |        |          |          |              |                      |                            | petroleum system in the Baltic Basin                                                                                   |
| 8. Reservoir pressure (psi)                                     | 2945   | 8300     | 7106     | Triangular   |                      | assumed                    | (northern Europe). AAPG Bulletin 101,<br>1971–1993                                                                     |
| 9. Reservoir Temperature (°C)                                   | 64     | 202      | 135      | Triangular   | +                    | assumed                    | 19/1-1993                                                                                                              |
| Acatron rengerature ( cy                                        |        | Z.U.Z.   | 133      | THE IEEE     |                      | DAMING.                    | 9. Sanei, H., Petersen, H.I., Schovsbo, N.H.                                                                           |
| 10. Gas saturation (%)(Sg)                                      | 15     | 80       | 50       | Triangular   |                      | assumed                    | Jiang, C. & Goodsite, M.E. 2014.<br>Petrographic and geochemical compositio                                            |
| 11. Oil Saturation (%) So)                                      |        |          | _        |              | 1                    | assumed                    | of kerogen in the Furongian (U. Cambrian)                                                                              |
| 11. UH Saturation (%) So)                                       |        |          | U        |              | 1                    | assumed                    | Alum Shale, central Sweden: reflections or                                                                             |
| 12. Gas generation mgHC/g TOC (Hydrogen                         |        |          |          |              |                      |                            | the petroleum generation potential.  International Journal of Coal Petrology                                           |
| index)                                                          | 350    | 560      | 470      | Triangular   | 9                    |                            | 158-169.                                                                                                               |
| 13. Kerogen type                                                |        |          | _        |              | 2                    | prior to type III          | 10. Petersen, H.L., Schovsbo, N.H. &                                                                                   |
| 13. Kerogen type                                                |        |          |          |              | +                    | prior to type III          | 10. Petersen, H.L., Schovsbo, N.H. &<br>Nielsen, A.T. 2013. Reflectance                                                |
|                                                                 |        |          |          |              |                      |                            | measurements of zooclasts and solid                                                                                    |
| 14. Sorption capacity VReq 1,9 % (mmol/g)                       | 0,12   | 0,31     | 0,2      | Triangular   | 5                    |                            | bitumen in Lower Palaeozoic shales,<br>southern Scandinavia: correlation to                                            |
| 15. Matrix permeability (nDarcy)                                | 7      | 45       | 40       | Triangular   | 6                    |                            | vitrinite reflectance. International Journal                                                                           |
|                                                                 |        |          |          |              |                      |                            | of Coal Petrology 114, 1–18.                                                                                           |
| <ol> <li>Adsorbed gas storage capacity (scf/ton)</li> </ol>     | 30     | 75       | 50       | Triangular   | 5                    |                            | 11. Henningsen, L.M., Jensen, C.H.,                                                                                    |
| 17. Compressibility factor (z)                                  | 0.76   | - 1      | 1.01     | Triangular   | -                    | assumed                    | Schavsbo. N.H., Nielsen. A-T. & Pedersen,                                                                              |
|                                                                 | 0      |          |          |              |                      |                            | G.K., 2018. Shale fabric and organic<br>nanoporosity in lower Palaeozoic shales,                                       |
| 18a. Bg - Gas formation volume factor                           | 0.0089 | 0.0183   | 0.0133   | Triangular   |                      | assumed                    | Bornholm, Denmark. Geological Survey of                                                                                |
| 18b. Bo - Oll formation valume factor                           |        |          |          |              | -                    |                            | Denmark and Greenland Bulletin 41, 17-                                                                                 |
| 19. Langmuir Pressure (pl., psi)                                | 432    | 700      | 435      | Triangular   | 5                    |                            | 20.                                                                                                                    |
|                                                                 |        |          |          |              |                      |                            |                                                                                                                        |
| 20. Langmuir Volume (nt., scf/ton)                              | 20     | 63       | 36       | Triangular   | 5                    |                            |                                                                                                                        |
| 21. Bulk mineral constituents XRD                               |        |          |          |              | 1                    |                            |                                                                                                                        |
| 21. Bunk mineral constituents AND<br>21a Total Clay content (%) | 40     | 70       | 55       | Triangular   | 4, 7                 |                            |                                                                                                                        |
| Content of smectite                                             |        |          |          |              |                      |                            |                                                                                                                        |
| Content of Hite & Mica                                          |        |          |          |              |                      |                            |                                                                                                                        |
| Content of Kaolinite<br>21b Quartz-feldspars content (%)        | 0      | 30       | 40       |              | 1                    |                            |                                                                                                                        |
| 21c Carbonate content (%)                                       | 1 0    | 10       | 40       | Triangular   |                      |                            |                                                                                                                        |

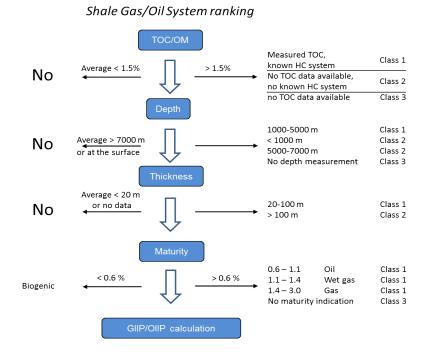




# Data Gathering and GIS model *in progress*

- Data for defining relevant volumes needed for Assessment to be made has been identified:
- Central Graben area:
- The 3D GeoEra model
- Uk and N area:
- Analogues maps detailing Thickness, maturity, source quality is currently been digitalized.
- Data sources for N include Millennium and SPBA Atlas available. Well data delivered




Example of map view





# Resources model to be implemented

- The EUOGA model as developed in a previous unconventional assessment study of onshore European basins will be followed.
- This approach uses a monte Carlos simulation preceded by a Shale gas/oil System Ranking



Nelskamp, S., Zijp, M.H.A.A., 2016. Final Technical Report on evaluation of existing assessment methodologies and the proposed common methodology for pan-EU assessment. Report T2b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET.





Class 2

GARAH - Geological Analysis and Resource Assessment of selected Hydrocarbon systems

GEO-ENERGY

### WP2 - Task

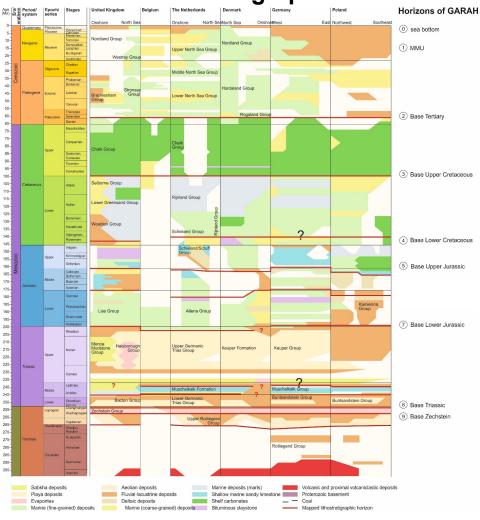
### 3D basin and petroleum system modelling in the North Sea Central Graben: a cross-border Dutch, German and Danish pilot study Mid-Term Progress

Rüdiger Lutz, Jashar Arfai, Susanne Nelskamp, Anders Mathiesen, Stefan Ladage BGR, TNO, GEUS 02.2020





## Status Task 3-D BPSM


- 1. Cross-border Pilot Study Area finalized
- 2. Source rocks and 3-D BPSM parameters finalized
- 3. Horizons harmonized finalized
- 4. Cross-border geological model finalized
- 5. Erosion modelling in Progress
- 6. Simulations for unconventionals Pending
- 7. Simulations for conventionals Pending





### **Cross-border stratigraphic chart**

9 Input Horizons for 3-D BPSM







### **Initial input maps**

|    | Age<br>[Ma] | Horizon    | - | Depth Map                          | Erosion Map   | Layer                    | - | Event Type | Facies Map                                 | No. of Sublayers | Max. Time Step<br>[Ma] |
|----|-------------|------------|---|------------------------------------|---------------|--------------------------|---|------------|--------------------------------------------|------------------|------------------------|
| 1  | 0.00        | Horizon_0  |   | ⇒ Seafloor                         | $\Rightarrow$ | Neogene                  |   | Deposition | Map_Neogene_Facies_1_17                    | 1                | 10.00                  |
| 2  | 15.97       | Horizon_1  |   | → MMU_DE_NL_DK_fill                | $\Rightarrow$ | Palaeogene&Lower Neogene |   | Deposition | ➡ Map_Palaeogene&Lower Neogene_Facies_1_18 | 1                | 10.00                  |
| 3  | 65.00       | Horizon_2  |   | Base_Tertiary_DE_NL_DK_fill        | $\Rightarrow$ | Upper Cretaceous         |   | Deposition | → Map_Upper Cretaceous_Facies_1_19         | 1                | 10.00                  |
| 4  | 98.90       | Horizon_3  |   | Upper_Cretaceous_DE_NL_DK_fill     | $\Rightarrow$ | Lower Cretaceous         |   | Deposition | → Map_Lower Cretaceous_Facies_1_20         | 1                | 10.00                  |
| 5  | 142.00      | Horizon_4  |   | ■ Base_Cretaceous_DE_NL_DK_fill    | $\Rightarrow$ | Upper Jurassic           |   | Deposition | → Map_Upper Jurassic_Facies_1_21           | 1                | 10.00                  |
| 6  | 165.00      | Horizon_5  |   | Upper_Jurassic_DE_NL_DK_fill       | $\Rightarrow$ | Lower Jurassic           |   | Deposition | → Map_Lower Jurassic_Facies_1_22           | 1                | 10.00                  |
| 7  | 200.00      | Horizon_6  |   | Base_Jurassic_DE_NL_DK_fill        | $\Rightarrow$ | Triassic                 |   | Deposition | → Map_Triassic_Facies_1_23                 | 1                | 10.00                  |
| 8  | 251.00      | Horizon_7  |   | Base_Lower_Triassic_no_diapirs_fil | $\Rightarrow$ | Zechstein                |   | Deposition | → Map_Zechstein_Facies_1_24                | 1                | 10.00                  |
| 9  | 258.00      | Horizon_8  |   | Base_Zechstein_DE_NL_DK            | $\Rightarrow$ | Basement                 |   | Deposition | → Map_Basement_Facies_1                    | 1                | 10.00                  |
| 10 | 380.00      | Horizon 18 |   | ⇒ Basement                         | $\Rightarrow$ |                          |   |            |                                            |                  |                        |

### Input data

- Nine depth converted maps including the sea floor from the current Petrel project (provided by Maryke)
- A 2000 m thick basement is assigned to the model for the pre-Zechstein formations
- Model contains nine layers, cell size 250 m x 250 m
- Salt shapes are constructed using the top-Zechstein depth map
- Salt movement is modelled using the facies piercing tool






### Age assignment including erosion events

|    |             |                |   | 7 19                          | o accigimioni mici                               | <b>u</b> ag <b>u</b> .   | <b>.</b> | <b>U U</b> | 70110                                      |                  |                        |
|----|-------------|----------------|---|-------------------------------|--------------------------------------------------|--------------------------|----------|------------|--------------------------------------------|------------------|------------------------|
|    | Age<br>[Ma] | Horizon        | - | Depth Map                     | Erosion Map                                      | Layer                    | -        | Event Type | Facies Map                                 | No. of Sublayers | Max. Time Step<br>[Ma] |
| 1  | 0.00        | Horizon_0      |   | ⇒ Seafloor                    | $\Rightarrow$                                    |                          |          |            |                                            |                  |                        |
| 2  |             |                |   |                               |                                                  | Neogene                  |          | Deposition | ➡ Map_Neogene_Facies_1_17                  | 1                | 10.00                  |
| 3  | 11.20       | MMU            |   |                               | $\Rightarrow$                                    |                          |          |            |                                            |                  |                        |
| 4  |             |                |   |                               |                                                  | Erosion_31               |          | Erosion    |                                            |                  | 10.00                  |
| 5  | 15.97       | Horizon_1      |   | → MMU_DE_NL_DK                | Neogene_Erosion                                  |                          |          |            |                                            |                  |                        |
| 6  |             |                |   |                               |                                                  | Palaeogene&Lower Neogene |          | Deposition | ➡ Map_Palaeogene&Lower Neogene_Facies_1_18 | 1                | 10.00                  |
| 7  | 61.60       | Horizon_2      |   | ⇒ Base_Tertiary_DE_NL_DK      | $\Rightarrow$                                    |                          |          |            |                                            |                  |                        |
| 8  |             |                |   |                               |                                                  | Upper Cretaceous         |          | Deposition | ➡ Map_Upper Cretaceous_Facies_1_19         | 1                | 10.00                  |
| 9  | 83.50       | Sub-Herzynian  |   |                               |                                                  |                          |          |            |                                            |                  |                        |
| 10 |             |                |   |                               |                                                  | Erosion_27               |          | Erosion    |                                            |                  | 10.00                  |
| 11 | 98.90       | Horizon_3      |   | ⇒ Upper_Cretaceous_DE_NL_DK   | SubHercyn_UCret_Erosion_NL_D_DK                  |                          |          |            |                                            |                  |                        |
| 12 |             |                |   |                               |                                                  | Lower Cretaceous         |          | Deposition | ➡ Map_Lower Cretaceous_Facies_1_20         | 1                | 10.00                  |
| 13 | 122.00      | Late-Cimmerian |   |                               | ➡ Late_Cimm_Non_Erosion_D                        |                          |          |            |                                            |                  |                        |
| 14 |             |                |   |                               |                                                  | Erosion_56               |          | Erosion    |                                            |                  | 10.00                  |
| 15 | 142.00      | Horizon_4      |   | ⇒ Base_Cretaceous_DE_NL_DK    | Late_Cimm_Upper Jurassic_LCretDK_Erosion_NL_D_DK |                          |          |            |                                            |                  |                        |
| 16 |             |                |   |                               |                                                  | Upper Jurassic           |          | Deposition | ➡ Map_Upper Jurassic_Facies_1_21           | 1                | 10.00                  |
| 17 | 158.00      | Mid-Cimmerian  |   |                               | $\Rightarrow$                                    |                          |          |            |                                            |                  |                        |
| 18 |             |                |   |                               |                                                  | Erosion_17               |          | Erosion    |                                            |                  | 10.00                  |
| 19 | 165.50      | Horizon_5      |   | ⇒ Upper_Jurassic_DE_NL_DK     | Lower_Middle_Jurassic_Erosion_MidCimm_NL_D_DK    |                          |          |            | _                                          |                  |                        |
| 20 |             |                |   |                               |                                                  | Lower Jurassic           |          | Deposition | ➡ Map_Lower Jurassic_Facies_1_22           | 1                | 10.00                  |
| 21 | 201.30      | Horizon_6      |   | ⇒ Base_Jurassic_DE_NL_DK      | → Triassic_Erosion_MidCimm_NL_D_DK               |                          |          |            |                                            |                  |                        |
| 22 |             |                |   |                               |                                                  | Triassic                 |          | Deposition | → Map_Triassic_Facies_1_23                 | 1                | 10.00                  |
| 23 | 201.00      | Horizon_7      |   | Base_Lower_Triassic_no_diapir | <b>⇒</b>                                         |                          |          |            |                                            |                  |                        |
| 24 |             |                |   |                               |                                                  | Zechstein                |          | Deposition | → Map_Zechstein_Facies_1_24                | 1                | 10.00                  |
| 25 | 258.00      | Horizon_8      |   | Base_Zechstein_DE_NL_DK       | $\Rightarrow$                                    |                          |          |            |                                            |                  |                        |
| 26 |             |                |   |                               |                                                  | Basement                 |          | Deposition | → Map_Basement_Facies_1                    | 1                | 10.00                  |
| 27 | 380.00      | Horizon_18     |   | <b>⇒</b> Basement             | $\Rightarrow$                                    |                          |          |            |                                            |                  |                        |
|    |             |                |   |                               |                                                  |                          |          |            |                                            |                  |                        |





### 3-D pilot study area - combined erosion maps

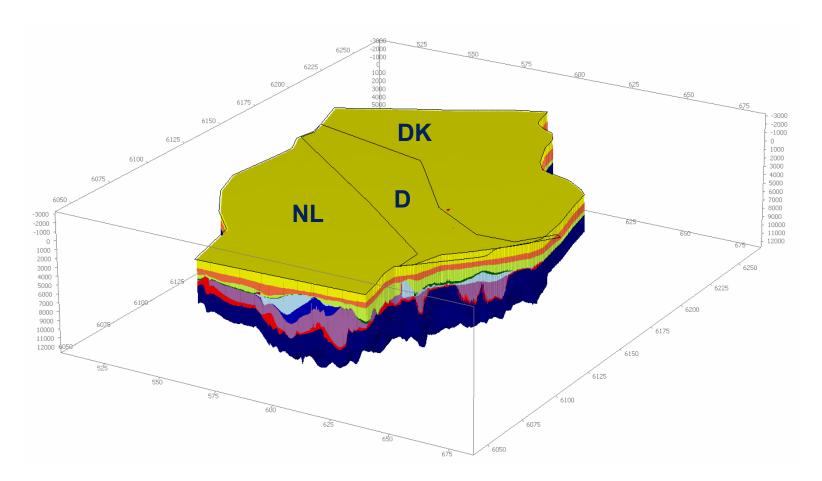






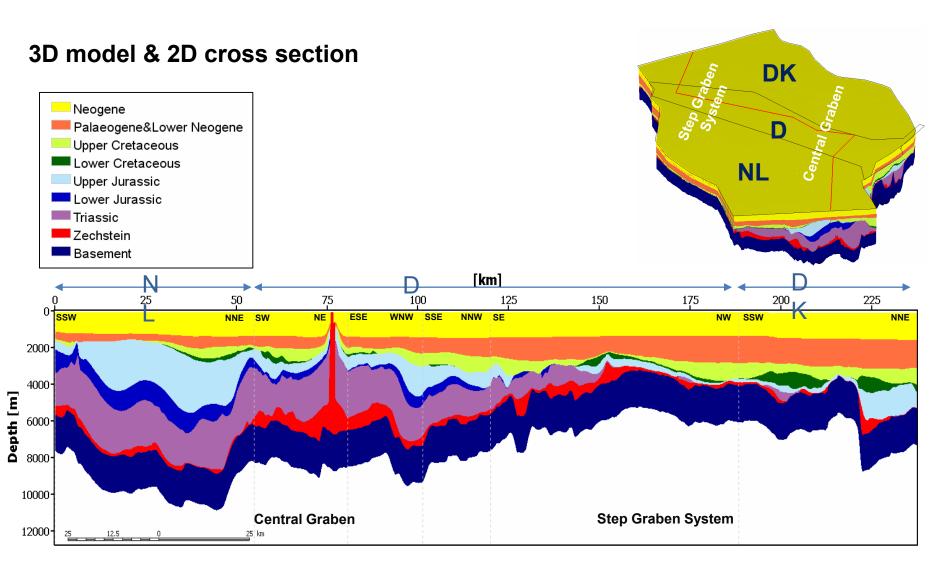
### Source rock definition

| Age | Source name         | Layer          | Fraction mode | Fraction | Fraction map | Thickness mode       |
|-----|---------------------|----------------|---------------|----------|--------------|----------------------|
| DK  | Farsund (Bo Member) | Upper Jurassic | Value         | 0        |              | Мар                  |
| DK  | Bryne               | Upper Jurassic | Value         | 100      |              | Мар                  |
| D   | Farsund_Bo          | Upper Jurassic | Value         | 0        |              | Мар                  |
| D   | Posidonia           | Lower Jurassic | Value         | 30       |              | Мар                  |
| NL  | Posidonia           | Lower Jurassic | Value         | 0        |              | Map (from NLOG 2012) |


| Thickness value | Thickness map             | Lithology                    | hology Kinetics              |  |
|-----------------|---------------------------|------------------------------|------------------------------|--|
| 75              | DK_Farsund_SR_UniTCK      | Shale (organic rich, 3% TOC) | Pepper&Corvi(1995)_TII(B)    |  |
| 15              | DK_Bryne_SR_UniTCK        | Shale (organic rich, 3% TOC) | Pepper&Corvi(1995)_TIII(D/E) |  |
| 25              | D_Bo_SR_UniTCK            | Shale (organic rich, 3% TOC) | Pepper&Corvi(1995)_TII(B)    |  |
| 15              | D_Posidonia_SR_UniTCK_max | Shale (organic rich, 3% TOC) | Pepper&Corvi(1995)_TII(B)    |  |
|                 | NL_ATPO_SR_TCK            | Shale (organic rich, 3% TOC) | Pepper&Corvi(1995)_TII(B)    |  |

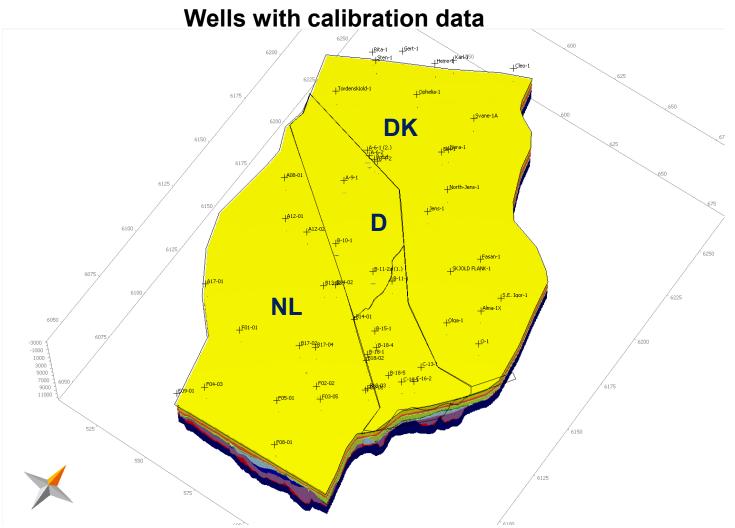
| Kinetics                     | TOC mode               | TOC value | TOC map  | HI mode | HI value | HI map |
|------------------------------|------------------------|-----------|----------|---------|----------|--------|
| Pepper&Corvi(1995)_TII(B)    | Value                  | 5         |          | Value   | 400      |        |
| Pepper&Corvi(1995)_TIII(D/E) | Value                  | 70        |          | Value   | 300      |        |
| Pepper&Corvi(1995)_TII(B)    | Value                  | 5         |          | Value   | 400      |        |
| Pepper&Corvi(1995)_TII(B)    | Value                  | 5         |          | Value   | 500      |        |
| Pepper&Corvi(1995)_TII(B)    | Map (from TNO project) |           | ATPO_TOC | Value   | 500      |        |






### 3-D pilot study area – basin model

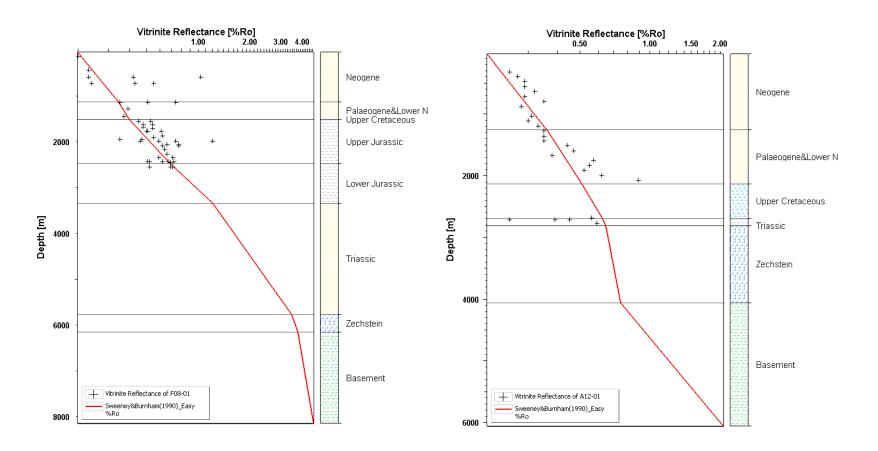

















#### **Calibration - Vitrinite Reflectance**







## 2. WP Progress continued

- 4. WP3 Gas Hydrates in Europe
  - a. Listing content of Europe's Gas Hydrates
  - b. International collaboration
  - c. Building a database











#### Mid term Progress:

# WP3 Addressing knowledge gaps in the hydrate assessment in the European continental margins

IGME, GEUS, BRGM, NERC – BGS, GEOINFORM





#### WP3 Progress – February 2020

| Task                                                                                  | Progress |
|---------------------------------------------------------------------------------------|----------|
| 3A. Collection of data sources to be implemented in the hydrate related GIS-database. | Complete |
| Data review & Characterization method agreed                                          | Complete |
| 3B. Definition of the data model structure and data loading.                          | Ongoing  |





## 3A. Collection of data sources to be implemented in the hydrate related GIS-database

| Deliverable                                                                                                                                                                                                                                                                                                  | Progress |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| D3.1: Report of available hydrate related data. This deliverable will be a report containing a list of the available hydrate related-data in a pan-European scope of interest to be incorporated into the GIS-database. The location (source), accessibility/use, size, typology and state will be specified | Complete |





#### 3A. Collection of data sources to be implemented in the hydrate related GIS-database

#### REPORT D3.1 of GARAH Project

#### 835 information layers of information (10.75 Gb)

- data of pan-European scope coming from public and free databases such as EMODnet, PERGAMON or MIGRATE
- · data of regional scope coming from scientific organizations

| Name                                      | Description                                               | Source                                          | Importance | Format of data | Size (Mb) | Georeferenced | metadata available | Meta-Standarised | Quality |
|-------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|------------|----------------|-----------|---------------|--------------------|------------------|---------|
|                                           |                                                           |                                                 |            |                |           |               |                    |                  |         |
| Marine_Gas_Hydrate_Deposits               | Polygon SHP - EMODnet Geology                             | EMODnet Geology                                 | high       | Shapefile      | 0.248     | yes           | yes                | yes              | high    |
| Metadata_EMODnet_Geology_WP7_Minerals.pdf | Description of the Metadata from EMODnet                  | EMODnet Geology                                 | high       | PDF            | 0.244     | no            |                    |                  |         |
|                                           |                                                           |                                                 |            |                |           |               |                    |                  |         |
|                                           |                                                           |                                                 |            |                | 1.077     |               |                    |                  |         |
|                                           |                                                           |                                                 |            |                | 1         |               |                    |                  |         |
| Gebco_Arctic_xyz.rar                      | Data source                                               | Gebco Atlas 2003                                | high       | RAR            | 1         | no            | yes                | no               | high    |
|                                           |                                                           |                                                 |            |                | ]         |               |                    |                  |         |
| IBCAO_Ver3_RR_2012-03-16.tif              | Data source                                               | IBCAO 2008                                      | high       | tiff           |           | yes           | yes                | yes              | high    |
|                                           |                                                           |                                                 |            |                |           |               |                    |                  |         |
| gebco_bathy                               | Digital bathymetry model                                  | Gebco Atlas 2003                                | high       | raster         |           | yes           | yes                | yes              | high    |
| gebco_shade                               | Hillshade model                                           | Gebco_bathy                                     | high       | raster         |           | yes           | yes                | yes              | high    |
| ibcao_bathy                               | Digital bathymetry model                                  | IBCAO 2008                                      | high       | raster         |           | yes           | yes                | yes              | high    |
| ibcao_shade                               | Hillshade model                                           | ibcao_bathy                                     | high       | raster         |           | yes           | yes                | yes              | high    |
|                                           |                                                           |                                                 |            |                |           |               |                    |                  |         |
|                                           |                                                           |                                                 |            |                | 7.8       |               |                    |                  |         |
| Countries_Lines                           | Line SHP - hillshade                                      | ESRI                                            | low        | shapefile      |           | yes           | yes                | yes              | high    |
| Study_Area                                | Polygone SHP of the AOI                                   | PERGAMOMON                                      | low        | shapefile      |           | yes           | yes                | yes              | high    |
|                                           |                                                           |                                                 |            |                |           |               |                    |                  |         |
|                                           |                                                           |                                                 |            |                | 0.878     |               |                    |                  |         |
|                                           |                                                           |                                                 |            |                |           |               |                    |                  |         |
| gscof_5816_e_2008_mn01.pdf                | Geological map of the Arctic                              | Geological Survey of Canada, 2008               | low        | PDF            |           | no            | yes                | no               | high    |
| gscof_5816_e_2008_mn02.pdf                | Legend of the Geological map of the Arctic                | Geological Survey of Canada, 2008               | low        | PDF            |           | no            | yes                | no               | high    |
| gscof_5816_e_2008_mn03.pdf                | Lithologies of the Geological map of the Arctic (part 1)  | Geological Survey of Canada, 2008               | low        | PDF            |           | no            | yes                | no               | high    |
| gscof_5816_e_2008_mn04.pdf                | Lithologies of the Geological map of the Arctic (part 2)  | Geological Survey of Canada, 2008               | low        | PDF            |           | no            | yes                | no               | high    |
| gscof_5816_e_2008_mn05.pdf                | Lithologies of the Geological map of the Arctic (part 3)  | Geological Survey of Canada, 2008               | low        | PDF            |           | no            | yes                | no               | high    |
|                                           |                                                           |                                                 |            |                | 1         |               |                    |                  |         |
| AAG_2003_icelandhf.pdf                    | Article about Mantle plumes                               | AAG, 2003                                       | low        | PDF            | 1         | no            | yes                | no               | high    |
| Hustof_etal_2009_Svalbard.pdf             | Gas hydrate reservoir (fram Strait - NW Svalbard)         | Earth and Planetary Science Letters 284 (12-24) | low        | PDF            | 1         | no            | yes                | no               | high    |
| Jakobsson_etal_2008_IBCAO_GRL_2008.pdf    | Bathymetry of Arctic Ocean (IBCAO)                        | Geophysical Research Letters, vol. 35 L07602    | low        | PDF            | 1         | no            | yes                | no               | high    |
| Mienert_etal_2005.pdf                     | Gas hydrate stability (Storegga Slide, Norway)            | Marine and Petroleum Geology 22 (233-244)       | low        | PDF            | 1         | no            | yes                | no               | high    |
| Petersen_etal_2010.pdf                    | 3D seismic imaging of gas chimney (Arctic sediment drift) | Marine and Petroleum Geology 27(9) 1981-1994    | low        | PDF            | 1         | no            | yes                | no               | high    |
| Rajan_etal_2012_Svalbard.pdf              | Gas migration in NW-Svalbard                              | Marine and Petroleum Geology 32 (36-49)         | low        | PDF            | 1         | no            | yes                | no               | high    |
| Vannest_etal_2005_et.pdf                  | Geothermal gradients in W Svalbard margin                 | Terra Nova vol. 17 (6), 510-516                 | low        | PDF            | 1         | no            | yes                | no               | high    |
| Wessel_&_Smith_1998.pdf                   | Global Inventory of Natural Gas Hydrate Ocurrence         | USGS, 1998                                      | low        | PDF            | 1         | no            | yes                | no               | high    |
|                                           |                                                           |                                                 |            |                | 1         |               |                    |                  |         |
| dsdpsites.sbx                             | Point SHP - DSDP sites location                           | IODP                                            | high       | shapefile      | 1         | yes           | yes                | yes              | high    |
| odpsites.sbx                              | Point SHP - ODP sites location                            | IODP                                            | high       | shapefile      | _         | yes           | yes                | yes              | high    |



#### International colaboration

- Public and free databases such as:
  - EMODnet,
  - PERGAMON or
  - MIGRATE

#### **Institutions:**

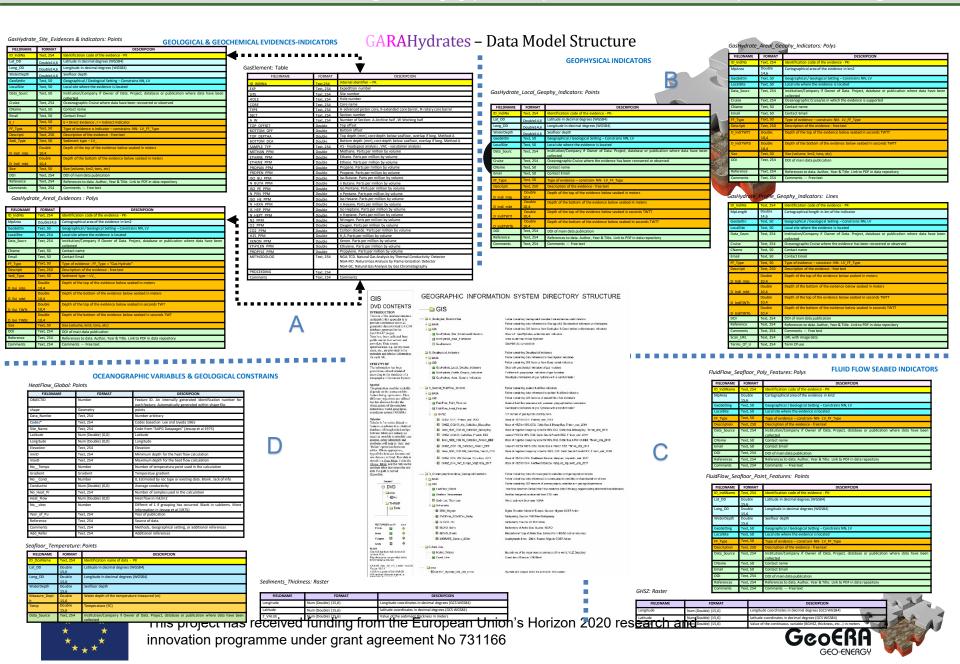
- GSI, Geological survey of Ireland
- OGS, Istituto Nazionale di Oceanografia e di Geofisica ... ?!
- NOC National Oceanographic Center
- University of Southamptom

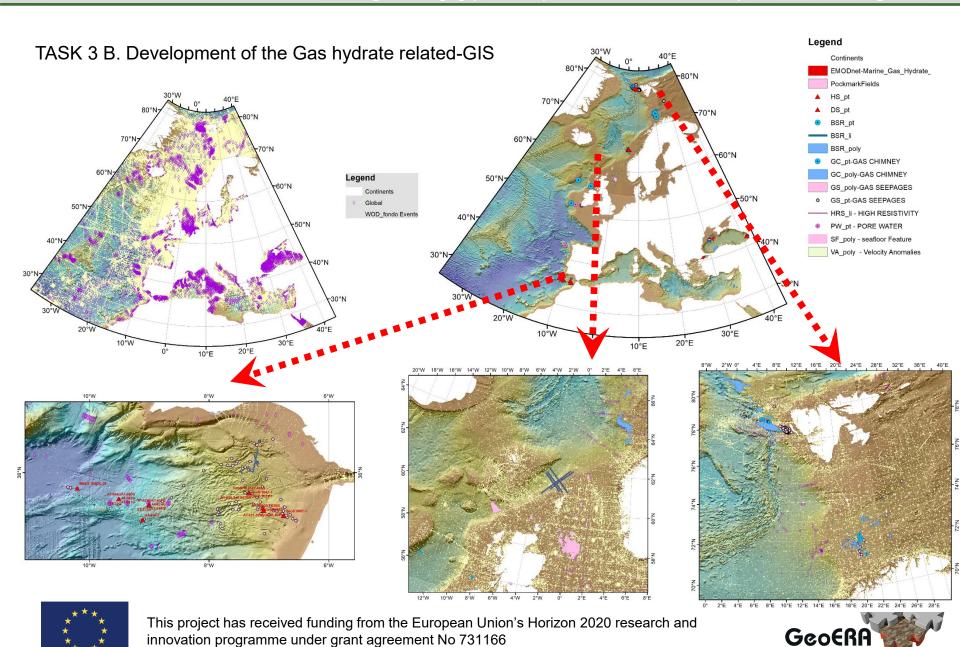




#### 3B. Definition of the data model structure and data loading

#### Actions:


Data model structure. Complete


Data loading. Ongoing. It will finish in June 2020

| Deliverable                        | Deadline   |
|------------------------------------|------------|
| D3.2: Hydrate related GIS-database | (M27)      |
|                                    | Sept. 2020 |









#### Next steps

| Actions/Tasks/Deliverables                     | Deadline            |
|------------------------------------------------|---------------------|
| Data loading (task 3B)                         | June 2020           |
| Deliverable D3.2: Hydrate related GIS-database | (M27)<br>Sept. 2020 |
| Task 3C. Integration of results                | Dec. 2020           |
| D3.3: Gas Hydrate overview report              | (M33)<br>March 2021 |





## 2. WP Progress continued

- 5. WP4 GIP
  - a. Establishing technical specifications
  - b. Coordination of the GARAH database and Share Point development





### Status tasks Knowledge data base

- Identify and discuss requirements with the Information Platform (IP) team finalized
- Determination of requirements and standards finalized
- Preparing and creating the online platform finalized
- Local data implementation in progress
- IP data implementation and prototyping Pending
- Data validation and testing
   Pending





## Establishing technical specifications







## Coordination of the GARAH database and Share Point development

- New WP lead: Uffe Larsen
  - GARAH contact-person to GIP

- Transferring shape files into the EGDI database
- Registration of the metadata.







### 2. WP Progress continued

- 6. WP1 Project management
  - a. Finances
  - b. Progress according to time plan / Gant Chart
  - c. Project meetings and internal communications
  - d. Cooperation with 3DGEO-EU, HIKE and GIP
  - e. Dissemination and communication





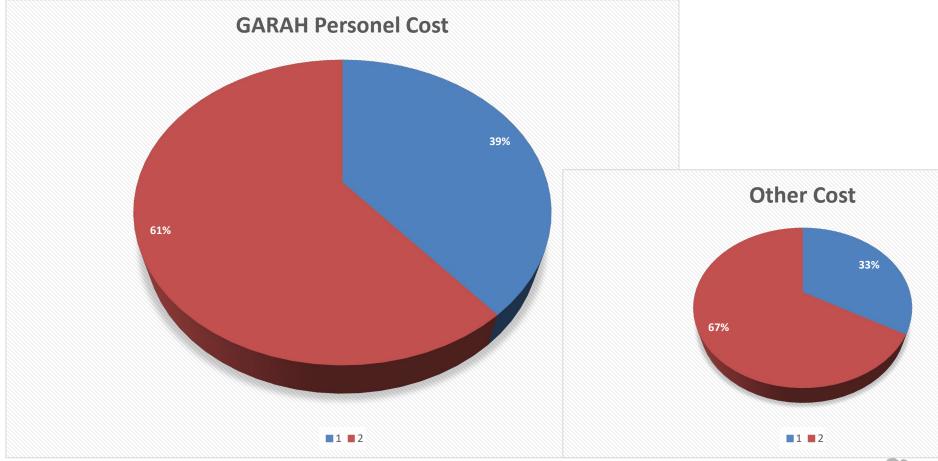
## Status tasks Project coordination

 Administrative & Operational Management in progress

Project Data Management Plan finalized

Communication in progress

Dissemination and Exploitation Plan finalized

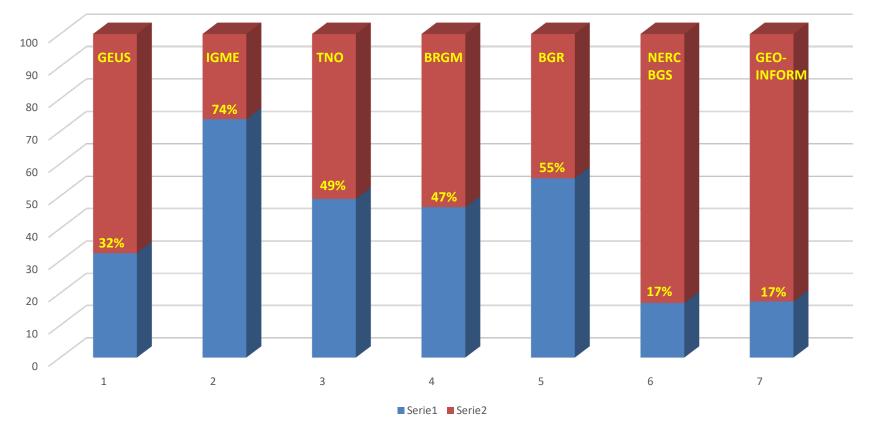

Annual progress reports 2018 finalized

Mid term report finalized





#### **Finances Total**








## Finances per Survey

#### **Total Cost**







## Progress - time plan / Gant Chart

| Gantt Chart                                | 20                | 18                 |                    | 201                                 | 9             |            |        |             | 2          | 2020           |                     | 202                       | 1                            |
|--------------------------------------------|-------------------|--------------------|--------------------|-------------------------------------|---------------|------------|--------|-------------|------------|----------------|---------------------|---------------------------|------------------------------|
|                                            | Q3                | Q4                 | Q1                 | Q2                                  | Q3            | Q4         |        | Q1          | Q2         | Q3             | Q4                  | Q1                        | Q2                           |
| WP1                                        |                   |                    |                    |                                     |               |            |        |             |            |                |                     |                           |                              |
| Annual Project Meetings                    | Х                 |                    |                    |                                     | Х             |            |        |             |            | Х              |                     |                           | Х                            |
| WP Meetings (X), Skype (*)                 | X                 |                    | *                  |                                     | Х             |            |        | *           |            | Х              |                     | *                         |                              |
| Board Meetings                             | X                 |                    |                    |                                     | Х             |            |        |             |            | Х              |                     |                           | Х                            |
| Progress reporting                         |                   |                    | X                  |                                     |               |            |        | Х           |            |                |                     | Х                         |                              |
| Final report                               |                   |                    |                    |                                     |               |            | Ш      |             |            |                |                     | Repo                      | ort                          |
|                                            |                   |                    |                    |                                     |               |            | Ш      |             |            |                |                     |                           |                              |
| Deliverables                               | D1.1              | D1.2 D4.1          | D1.3, D2.1<br>D3.1 |                                     |               |            |        | D1.4        | D2.4       |                | D3.2, D4.2,<br>D4.3 | D1.5, D2.2, D2.3,<br>D3.3 | D1.6, D1.7,<br>D2.6          |
| Milestones                                 | MS1               | MS2, MS3           |                    |                                     | MS4           |            |        |             | MS5        | MS6            | MS7                 | MS8, MS9,<br>MS10, MS11   | MS12,<br>MS13, MS14,<br>MS15 |
|                                            |                   |                    |                    |                                     |               |            |        |             |            |                |                     |                           |                              |
| WP2                                        |                   |                    |                    |                                     |               |            |        |             |            |                |                     |                           |                              |
| Task 2A - DB                               | Harmor            | nize DB            | Report             | Report                              |               |            |        |             |            |                |                     |                           |                              |
| Task 2B- Petrol. System                    | Appr              | aisal              |                    | Data collation and characterisation |               |            |        | ation of PS |            |                | Report              |                           |                              |
| Task 2C - "EUOGA" assessments North Sea    |                   | Appraisal          |                    |                                     |               | Reso       | urce   | assessmer   | nts        |                |                     | Report                    |                              |
| Task 2D - Pilot Study 3D assessment        |                   | Appraisal          | Uncor              | ventional                           | assessment    |            |        | Report      |            |                |                     |                           |                              |
|                                            |                   | Appraisal          |                    |                                     |               |            |        |             | Convention | al assessment  |                     | Report                    |                              |
| Task 2E - Alternatives + Hazards           | Appr              | aisal              |                    |                                     |               |            |        |             |            |                | Generate Catalo     | gue                       | Report                       |
|                                            |                   |                    |                    |                                     |               |            |        |             |            |                |                     |                           |                              |
| WP3                                        |                   |                    |                    |                                     |               |            |        |             |            |                |                     |                           |                              |
| Task 3A - Collection of data sources       | Data collection a | and classification | Report             |                                     |               |            |        |             |            |                |                     |                           |                              |
| Task 3B - Data Model structure and loading |                   |                    |                    | Harm                                | onize Gas H   | ydrates re | elated | DB          |            | Input IP       |                     |                           |                              |
| Task 3C - Results                          |                   |                    |                    |                                     |               |            |        |             |            | Integration    |                     | Report                    |                              |
|                                            |                   |                    |                    |                                     |               |            | Ш      |             |            |                |                     |                           |                              |
| WP4                                        |                   |                    |                    |                                     |               |            | Ш      |             |            |                |                     |                           |                              |
| Task 4A - Requirements and standards       | Synthesis         | Report             |                    |                                     |               |            |        |             |            |                |                     |                           |                              |
| Task 4B - Online platform                  |                   |                    | Development        |                                     |               |            | Ш      |             |            |                |                     |                           |                              |
| Task 4C - Data implementation              |                   |                    |                    | li li                               | mplementation | n          |        |             | Prof       | otyping Report |                     | Validation                | Report                       |
| WP4 - Data input to IP (D4.5)              |                   |                    | Data supply        |                                     |               |            | Da     | a supply    |            | Data supply    |                     | Data supply               |                              |





## Deviations from time plan

| Description of the deviation (indicate also WP and/or Project partner where the deviation occured) | Description of corrective measures adopted: |    | Are changes to workplan / budget / needed? If yes, please specify: |
|----------------------------------------------------------------------------------------------------|---------------------------------------------|----|--------------------------------------------------------------------|
|                                                                                                    |                                             |    |                                                                    |
|                                                                                                    |                                             |    |                                                                    |
|                                                                                                    |                                             |    |                                                                    |
|                                                                                                    |                                             |    |                                                                    |
| WP2: D2.1 "State of the art report"; delivery date 28.2.2019 (M8)                                  | New delivery date 25.04.2019 (M10)          | No | No                                                                 |
| WP2: D2.4 "Task 2D - Pilot Study 3D assessment, Unconventional";                                   |                                             |    |                                                                    |
| delivery date 31.3.2020 (M21)                                                                      | New delivery date 30.09.2020 (M27)          | No | No                                                                 |
|                                                                                                    | Change title of 1.3 to "Midterm Project     |    |                                                                    |
| WP1: D1.4 "Project Progress and Monitoring Report"; Delivery date                                  | Progress Report"                            |    |                                                                    |
| 31.12.2019 (M18)                                                                                   | New delivery date 31.01.2020 (M19)          | No | No                                                                 |





### Project meetings, communications

- The GARAH project management board has bi-monthly SKYPE or WEBEX meetings, where the progress in the GARAH study is discussed and assessed.
- On work package level, several informal SKYPE meetings, together with emails has formed the basis for close communication.
- Until now, the group had WP and Board meetings in Madrid (Oct. 2018) and Edinburgh (Oct. 2019).





### Cooperation

 Close cooperation between 3DGEO-EU and GARAH on a 3D pilot study area in the North Sea.

Several joint workshops with other partners have been convened:

- Tech workshop with 3DGEU-EU, September 2018
- Tech workshop in Vienna, March 2019
- Tech workshop with 3DGEU-EU and HIKE, September 2019
- Several meetings and SKYPE meetings with GIP.





#### Dissemination and communication

|                        |                                    |            |                      |                          | I                                 |              |
|------------------------|------------------------------------|------------|----------------------|--------------------------|-----------------------------------|--------------|
| Please select activity | Subcategory                        | Date       | Target audience      | Number of people reached | Short name of project participant | Author(s)    |
| PUBLICATIONS           | SCIENTIFIC PUBLICATION             | 17-06-2019 | SCIENTIFIC COMMUNITY |                          | npa                               | Niels H. Sch |
| MEETINGS               | Meeting with international body    | 03-07-2018 | EU INSTITUTION       | 200                      | many                              |              |
| MEETINGS               | Meeting with other GeoERA projects | 01-09-2018 | SCIENTIFIC COMMUNITY | 15                       | TNO, BGR,GEUS,PGI                 |              |
| MEETINGS               | Meeting with other GeoERA projects | 01-03-2019 | SCIENTIFIC COMMUNITY | 75                       | many                              |              |
| MEETINGS               | Meeting with other GeoERA projects | 01-09-2019 | SCIENTIFIC COMMUNITY | 15                       | TNO, BGR,GEUS,PGI                 |              |
| MEETINGS               | Internal project meeting           | oct-2018   | SCIENTIFIC COMMUNITY | 20                       | TNO, IGME, BRGM, BO               | GR, BGS, GE  |
| MEETINGS               | Internal project meeting           | oct-2019   | SCIENTIFIC COMMUNITY | 20                       | TNO, IGME, BRGM, BO               | GR, BGS, GE  |
| MEDIA                  | ONLINE MEDIA                       |            | GENERAL PUBLIC       |                          | many                              |              |
| EVENTS                 | CONGRESS                           | sep-19     | SCIENTIFIC COMMUNITY | 100+                     | BGR, TNO, GEUS                    | Arfai, Ja    |
|                        |                                    |            |                      |                          |                                   |              |
|                        |                                    |            |                      |                          |                                   |              |
| MEETINGS               | Meeting with international body    | nov-18     | SCIENTIFIC COMMUNITY | 50                       | MIGRATE COST                      | R. León      |
| MEETINGS               | Meeting with international body    | 29-01-2019 | SCIENTIFIC COMMUNITY | 20                       | MIGRATE COST                      | R. León      |
| EVENTS                 | WORKSHOP                           | sep-19     | SCIENTIFIC COMMUNITY | 50                       | GDR Hydrates , Brest              | A. Burnol    |
| EVENTS                 | CONGRESS                           | sep-19     | SCIENTIFIC COMMUNITY | 100                      | IAS 2019, Rome                    | R. León      |





## 3. General Discussions/Questions/Conclusions



